\(\int \frac {\tan ^4(c+d x)}{a+b \sin (c+d x)} \, dx\) [1348]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 177 \[ \int \frac {\tan ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {2 a^4 \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\left (a^2-b^2\right )^{5/2} d}+\frac {a^2 b \sec (c+d x)}{\left (a^2-b^2\right )^2 d}+\frac {b \sec (c+d x)}{\left (a^2-b^2\right ) d}-\frac {b \sec ^3(c+d x)}{3 \left (a^2-b^2\right ) d}-\frac {a^3 \tan (c+d x)}{\left (a^2-b^2\right )^2 d}+\frac {a \tan ^3(c+d x)}{3 \left (a^2-b^2\right ) d} \] Output:

2*a^4*arctan((b+a*tan(1/2*d*x+1/2*c))/(a^2-b^2)^(1/2))/(a^2-b^2)^(5/2)/d+a 
^2*b*sec(d*x+c)/(a^2-b^2)^2/d+b*sec(d*x+c)/(a^2-b^2)/d-1/3*b*sec(d*x+c)^3/ 
(a^2-b^2)/d-a^3*tan(d*x+c)/(a^2-b^2)^2/d+1/3*a*tan(d*x+c)^3/(a^2-b^2)/d
 

Mathematica [A] (verified)

Time = 1.55 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.10 \[ \int \frac {\tan ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {\frac {48 a^4 \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\left (a^2-b^2\right )^{5/2}}-\frac {\sec ^3(c+d x) \left (-16 a^2 b+4 b^3+3 b \left (11 a^2-5 b^2\right ) \cos (c+d x)+12 b \left (-2 a^2+b^2\right ) \cos (2 (c+d x))+11 a^2 b \cos (3 (c+d x))-5 b^3 \cos (3 (c+d x))+6 a b^2 \sin (c+d x)+8 a^3 \sin (3 (c+d x))-2 a b^2 \sin (3 (c+d x))\right )}{(a-b)^2 (a+b)^2}}{24 d} \] Input:

Integrate[Tan[c + d*x]^4/(a + b*Sin[c + d*x]),x]
 

Output:

((48*a^4*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^2 - b^2)^(5/ 
2) - (Sec[c + d*x]^3*(-16*a^2*b + 4*b^3 + 3*b*(11*a^2 - 5*b^2)*Cos[c + d*x 
] + 12*b*(-2*a^2 + b^2)*Cos[2*(c + d*x)] + 11*a^2*b*Cos[3*(c + d*x)] - 5*b 
^3*Cos[3*(c + d*x)] + 6*a*b^2*Sin[c + d*x] + 8*a^3*Sin[3*(c + d*x)] - 2*a* 
b^2*Sin[3*(c + d*x)]))/((a - b)^2*(a + b)^2))/(24*d)
 

Rubi [A] (verified)

Time = 0.94 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.04, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.762, Rules used = {3042, 3206, 3042, 3086, 2009, 3087, 15, 3206, 3042, 3086, 24, 3139, 1083, 217, 4254, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^4(c+d x)}{a+b \sin (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (c+d x)^4}{a+b \sin (c+d x)}dx\)

\(\Big \downarrow \) 3206

\(\displaystyle -\frac {a^2 \int \frac {\tan ^2(c+d x)}{a+b \sin (c+d x)}dx}{a^2-b^2}+\frac {a \int \sec ^2(c+d x) \tan ^2(c+d x)dx}{a^2-b^2}-\frac {b \int \sec (c+d x) \tan ^3(c+d x)dx}{a^2-b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a^2 \int \frac {\tan (c+d x)^2}{a+b \sin (c+d x)}dx}{a^2-b^2}+\frac {a \int \sec (c+d x)^2 \tan (c+d x)^2dx}{a^2-b^2}-\frac {b \int \sec (c+d x) \tan (c+d x)^3dx}{a^2-b^2}\)

\(\Big \downarrow \) 3086

\(\displaystyle -\frac {b \int \left (\sec ^2(c+d x)-1\right )d\sec (c+d x)}{d \left (a^2-b^2\right )}-\frac {a^2 \int \frac {\tan (c+d x)^2}{a+b \sin (c+d x)}dx}{a^2-b^2}+\frac {a \int \sec (c+d x)^2 \tan (c+d x)^2dx}{a^2-b^2}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {a^2 \int \frac {\tan (c+d x)^2}{a+b \sin (c+d x)}dx}{a^2-b^2}+\frac {a \int \sec (c+d x)^2 \tan (c+d x)^2dx}{a^2-b^2}-\frac {b \left (\frac {1}{3} \sec ^3(c+d x)-\sec (c+d x)\right )}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3087

\(\displaystyle \frac {a \int \tan ^2(c+d x)d\tan (c+d x)}{d \left (a^2-b^2\right )}-\frac {a^2 \int \frac {\tan (c+d x)^2}{a+b \sin (c+d x)}dx}{a^2-b^2}-\frac {b \left (\frac {1}{3} \sec ^3(c+d x)-\sec (c+d x)\right )}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 15

\(\displaystyle -\frac {a^2 \int \frac {\tan (c+d x)^2}{a+b \sin (c+d x)}dx}{a^2-b^2}+\frac {a \tan ^3(c+d x)}{3 d \left (a^2-b^2\right )}-\frac {b \left (\frac {1}{3} \sec ^3(c+d x)-\sec (c+d x)\right )}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3206

\(\displaystyle -\frac {a^2 \left (-\frac {a^2 \int \frac {1}{a+b \sin (c+d x)}dx}{a^2-b^2}+\frac {a \int \sec ^2(c+d x)dx}{a^2-b^2}-\frac {b \int \sec (c+d x) \tan (c+d x)dx}{a^2-b^2}\right )}{a^2-b^2}+\frac {a \tan ^3(c+d x)}{3 d \left (a^2-b^2\right )}-\frac {b \left (\frac {1}{3} \sec ^3(c+d x)-\sec (c+d x)\right )}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a^2 \left (-\frac {a^2 \int \frac {1}{a+b \sin (c+d x)}dx}{a^2-b^2}+\frac {a \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx}{a^2-b^2}-\frac {b \int \sec (c+d x) \tan (c+d x)dx}{a^2-b^2}\right )}{a^2-b^2}+\frac {a \tan ^3(c+d x)}{3 d \left (a^2-b^2\right )}-\frac {b \left (\frac {1}{3} \sec ^3(c+d x)-\sec (c+d x)\right )}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3086

\(\displaystyle -\frac {a^2 \left (-\frac {a^2 \int \frac {1}{a+b \sin (c+d x)}dx}{a^2-b^2}+\frac {a \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx}{a^2-b^2}-\frac {b \int 1d\sec (c+d x)}{d \left (a^2-b^2\right )}\right )}{a^2-b^2}+\frac {a \tan ^3(c+d x)}{3 d \left (a^2-b^2\right )}-\frac {b \left (\frac {1}{3} \sec ^3(c+d x)-\sec (c+d x)\right )}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 24

\(\displaystyle -\frac {a^2 \left (-\frac {a^2 \int \frac {1}{a+b \sin (c+d x)}dx}{a^2-b^2}+\frac {a \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx}{a^2-b^2}-\frac {b \sec (c+d x)}{d \left (a^2-b^2\right )}\right )}{a^2-b^2}+\frac {a \tan ^3(c+d x)}{3 d \left (a^2-b^2\right )}-\frac {b \left (\frac {1}{3} \sec ^3(c+d x)-\sec (c+d x)\right )}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3139

\(\displaystyle -\frac {a^2 \left (-\frac {2 a^2 \int \frac {1}{a \tan ^2\left (\frac {1}{2} (c+d x)\right )+2 b \tan \left (\frac {1}{2} (c+d x)\right )+a}d\tan \left (\frac {1}{2} (c+d x)\right )}{d \left (a^2-b^2\right )}+\frac {a \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx}{a^2-b^2}-\frac {b \sec (c+d x)}{d \left (a^2-b^2\right )}\right )}{a^2-b^2}+\frac {a \tan ^3(c+d x)}{3 d \left (a^2-b^2\right )}-\frac {b \left (\frac {1}{3} \sec ^3(c+d x)-\sec (c+d x)\right )}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 1083

\(\displaystyle -\frac {a^2 \left (\frac {4 a^2 \int \frac {1}{-\left (2 b+2 a \tan \left (\frac {1}{2} (c+d x)\right )\right )^2-4 \left (a^2-b^2\right )}d\left (2 b+2 a \tan \left (\frac {1}{2} (c+d x)\right )\right )}{d \left (a^2-b^2\right )}+\frac {a \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx}{a^2-b^2}-\frac {b \sec (c+d x)}{d \left (a^2-b^2\right )}\right )}{a^2-b^2}+\frac {a \tan ^3(c+d x)}{3 d \left (a^2-b^2\right )}-\frac {b \left (\frac {1}{3} \sec ^3(c+d x)-\sec (c+d x)\right )}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {a^2 \left (\frac {a \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx}{a^2-b^2}-\frac {2 a^2 \arctan \left (\frac {2 a \tan \left (\frac {1}{2} (c+d x)\right )+2 b}{2 \sqrt {a^2-b^2}}\right )}{d \left (a^2-b^2\right )^{3/2}}-\frac {b \sec (c+d x)}{d \left (a^2-b^2\right )}\right )}{a^2-b^2}+\frac {a \tan ^3(c+d x)}{3 d \left (a^2-b^2\right )}-\frac {b \left (\frac {1}{3} \sec ^3(c+d x)-\sec (c+d x)\right )}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4254

\(\displaystyle -\frac {a^2 \left (-\frac {a \int 1d(-\tan (c+d x))}{d \left (a^2-b^2\right )}-\frac {2 a^2 \arctan \left (\frac {2 a \tan \left (\frac {1}{2} (c+d x)\right )+2 b}{2 \sqrt {a^2-b^2}}\right )}{d \left (a^2-b^2\right )^{3/2}}-\frac {b \sec (c+d x)}{d \left (a^2-b^2\right )}\right )}{a^2-b^2}+\frac {a \tan ^3(c+d x)}{3 d \left (a^2-b^2\right )}-\frac {b \left (\frac {1}{3} \sec ^3(c+d x)-\sec (c+d x)\right )}{d \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 24

\(\displaystyle -\frac {a^2 \left (-\frac {2 a^2 \arctan \left (\frac {2 a \tan \left (\frac {1}{2} (c+d x)\right )+2 b}{2 \sqrt {a^2-b^2}}\right )}{d \left (a^2-b^2\right )^{3/2}}+\frac {a \tan (c+d x)}{d \left (a^2-b^2\right )}-\frac {b \sec (c+d x)}{d \left (a^2-b^2\right )}\right )}{a^2-b^2}+\frac {a \tan ^3(c+d x)}{3 d \left (a^2-b^2\right )}-\frac {b \left (\frac {1}{3} \sec ^3(c+d x)-\sec (c+d x)\right )}{d \left (a^2-b^2\right )}\)

Input:

Int[Tan[c + d*x]^4/(a + b*Sin[c + d*x]),x]
 

Output:

-((b*(-Sec[c + d*x] + Sec[c + d*x]^3/3))/((a^2 - b^2)*d)) + (a*Tan[c + d*x 
]^3)/(3*(a^2 - b^2)*d) - (a^2*((-2*a^2*ArcTan[(2*b + 2*a*Tan[(c + d*x)/2]) 
/(2*Sqrt[a^2 - b^2])])/((a^2 - b^2)^(3/2)*d) - (b*Sec[c + d*x])/((a^2 - b^ 
2)*d) + (a*Tan[c + d*x])/((a^2 - b^2)*d)))/(a^2 - b^2)
 

Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3086
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_.), x_Symbol] :> Simp[a/f   Subst[Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2 
), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2 
] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])
 

rule 3087
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_S 
ymbol] :> Simp[1/f   Subst[Int[(b*x)^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + 
f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n - 1) 
/2] && LtQ[0, n, m - 1])
 

rule 3139
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = Fre 
eFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + 2*b*e*x + a 
*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] && NeQ 
[a^2 - b^2, 0]
 

rule 3206
Int[((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[a/(a^2 - b^2)   Int[(g*Tan[e + f*x])^p/Sin[e + f*x] 
^2, x], x] + (-Simp[b*(g/(a^2 - b^2))   Int[(g*Tan[e + f*x])^(p - 1)/Cos[e 
+ f*x], x], x] - Simp[a^2*(g^2/(a^2 - b^2))   Int[(g*Tan[e + f*x])^(p - 2)/ 
(a + b*Sin[e + f*x]), x], x]) /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2 
, 0] && IntegersQ[2*p] && GtQ[p, 1]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 
Maple [A] (verified)

Time = 0.54 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.21

method result size
derivativedivides \(\frac {\frac {2 a^{4} \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{\left (a -b \right )^{2} \left (a +b \right )^{2} \sqrt {a^{2}-b^{2}}}-\frac {32}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3} \left (32 a -32 b \right )}+\frac {16}{\left (32 a -32 b \right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {-2 a +b}{2 \left (a -b \right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {32}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \left (32 a +32 b \right )}-\frac {16}{\left (32 a +32 b \right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {-2 a -b}{2 \left (a +b \right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}}{d}\) \(214\)
default \(\frac {\frac {2 a^{4} \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{\left (a -b \right )^{2} \left (a +b \right )^{2} \sqrt {a^{2}-b^{2}}}-\frac {32}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3} \left (32 a -32 b \right )}+\frac {16}{\left (32 a -32 b \right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {-2 a +b}{2 \left (a -b \right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {32}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \left (32 a +32 b \right )}-\frac {16}{\left (32 a +32 b \right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {-2 a -b}{2 \left (a +b \right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}}{d}\) \(214\)
risch \(-\frac {2 \left (6 i a^{3} {\mathrm e}^{4 i \left (d x +c \right )}-3 i a \,b^{2} {\mathrm e}^{4 i \left (d x +c \right )}-6 a^{2} b \,{\mathrm e}^{5 i \left (d x +c \right )}+3 b^{3} {\mathrm e}^{5 i \left (d x +c \right )}+6 i a^{3} {\mathrm e}^{2 i \left (d x +c \right )}-8 a^{2} b \,{\mathrm e}^{3 i \left (d x +c \right )}+2 b^{3} {\mathrm e}^{3 i \left (d x +c \right )}+4 i a^{3}-i a \,b^{2}-6 a^{2} b \,{\mathrm e}^{i \left (d x +c \right )}+3 b^{3} {\mathrm e}^{i \left (d x +c \right )}\right )}{3 \left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3} d}-\frac {a^{4} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a -a^{2}+b^{2}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d}+\frac {a^{4} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a +a^{2}-b^{2}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right )^{2} \left (a -b \right )^{2} d}\) \(345\)

Input:

int(tan(d*x+c)^4/(a+b*sin(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

1/d*(2*a^4/(a-b)^2/(a+b)^2/(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2 
*c)+2*b)/(a^2-b^2)^(1/2))-32/3/(tan(1/2*d*x+1/2*c)+1)^3/(32*a-32*b)+16/(32 
*a-32*b)/(tan(1/2*d*x+1/2*c)+1)^2-1/2/(a-b)^2*(-2*a+b)/(tan(1/2*d*x+1/2*c) 
+1)-32/3/(tan(1/2*d*x+1/2*c)-1)^3/(32*a+32*b)-16/(32*a+32*b)/(tan(1/2*d*x+ 
1/2*c)-1)^2-1/2/(a+b)^2*(-2*a-b)/(tan(1/2*d*x+1/2*c)-1))
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 476, normalized size of antiderivative = 2.69 \[ \int \frac {\tan ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\left [-\frac {3 \, \sqrt {-a^{2} + b^{2}} a^{4} \cos \left (d x + c\right )^{3} \log \left (\frac {{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2} + 2 \, {\left (a \cos \left (d x + c\right ) \sin \left (d x + c\right ) + b \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}\right ) + 2 \, a^{4} b - 4 \, a^{2} b^{3} + 2 \, b^{5} - 6 \, {\left (2 \, a^{4} b - 3 \, a^{2} b^{3} + b^{5}\right )} \cos \left (d x + c\right )^{2} - 2 \, {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4} - {\left (4 \, a^{5} - 5 \, a^{3} b^{2} + a b^{4}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{6 \, {\left (a^{6} - 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} - b^{6}\right )} d \cos \left (d x + c\right )^{3}}, -\frac {3 \, \sqrt {a^{2} - b^{2}} a^{4} \arctan \left (-\frac {a \sin \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \cos \left (d x + c\right )}\right ) \cos \left (d x + c\right )^{3} + a^{4} b - 2 \, a^{2} b^{3} + b^{5} - 3 \, {\left (2 \, a^{4} b - 3 \, a^{2} b^{3} + b^{5}\right )} \cos \left (d x + c\right )^{2} - {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4} - {\left (4 \, a^{5} - 5 \, a^{3} b^{2} + a b^{4}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{3 \, {\left (a^{6} - 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} - b^{6}\right )} d \cos \left (d x + c\right )^{3}}\right ] \] Input:

integrate(tan(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="fricas")
 

Output:

[-1/6*(3*sqrt(-a^2 + b^2)*a^4*cos(d*x + c)^3*log(((2*a^2 - b^2)*cos(d*x + 
c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2 + 2*(a*cos(d*x + c)*sin(d*x + c) + b 
*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) 
- a^2 - b^2)) + 2*a^4*b - 4*a^2*b^3 + 2*b^5 - 6*(2*a^4*b - 3*a^2*b^3 + b^5 
)*cos(d*x + c)^2 - 2*(a^5 - 2*a^3*b^2 + a*b^4 - (4*a^5 - 5*a^3*b^2 + a*b^4 
)*cos(d*x + c)^2)*sin(d*x + c))/((a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6)*d*cos 
(d*x + c)^3), -1/3*(3*sqrt(a^2 - b^2)*a^4*arctan(-(a*sin(d*x + c) + b)/(sq 
rt(a^2 - b^2)*cos(d*x + c)))*cos(d*x + c)^3 + a^4*b - 2*a^2*b^3 + b^5 - 3* 
(2*a^4*b - 3*a^2*b^3 + b^5)*cos(d*x + c)^2 - (a^5 - 2*a^3*b^2 + a*b^4 - (4 
*a^5 - 5*a^3*b^2 + a*b^4)*cos(d*x + c)^2)*sin(d*x + c))/((a^6 - 3*a^4*b^2 
+ 3*a^2*b^4 - b^6)*d*cos(d*x + c)^3)]
 

Sympy [F]

\[ \int \frac {\tan ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\int \frac {\tan ^{4}{\left (c + d x \right )}}{a + b \sin {\left (c + d x \right )}}\, dx \] Input:

integrate(tan(d*x+c)**4/(a+b*sin(d*x+c)),x)
 

Output:

Integral(tan(c + d*x)**4/(a + b*sin(c + d*x)), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\tan ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(tan(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?` f 
or more de
 

Giac [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 241, normalized size of antiderivative = 1.36 \[ \int \frac {\tan ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {2 \, {\left (\frac {3 \, {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (a\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + b}{\sqrt {a^{2} - b^{2}}}\right )\right )} a^{4}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {a^{2} - b^{2}}} + \frac {3 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 10 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 4 \, a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 12 \, a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 6 \, b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 3 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 5 \, a^{2} b + 2 \, b^{3}}{{\left (a^{4} - 2 \, a^{2} b^{2} + b^{4}\right )} {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}\right )}}{3 \, d} \] Input:

integrate(tan(d*x+c)^4/(a+b*sin(d*x+c)),x, algorithm="giac")
 

Output:

2/3*(3*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*d*x + 
1/2*c) + b)/sqrt(a^2 - b^2)))*a^4/((a^4 - 2*a^2*b^2 + b^4)*sqrt(a^2 - b^2) 
) + (3*a^3*tan(1/2*d*x + 1/2*c)^5 - 3*a^2*b*tan(1/2*d*x + 1/2*c)^4 - 10*a^ 
3*tan(1/2*d*x + 1/2*c)^3 + 4*a*b^2*tan(1/2*d*x + 1/2*c)^3 + 12*a^2*b*tan(1 
/2*d*x + 1/2*c)^2 - 6*b^3*tan(1/2*d*x + 1/2*c)^2 + 3*a^3*tan(1/2*d*x + 1/2 
*c) - 5*a^2*b + 2*b^3)/((a^4 - 2*a^2*b^2 + b^4)*(tan(1/2*d*x + 1/2*c)^2 - 
1)^3))/d
 

Mupad [B] (verification not implemented)

Time = 21.49 (sec) , antiderivative size = 372, normalized size of antiderivative = 2.10 \[ \int \frac {\tan ^4(c+d x)}{a+b \sin (c+d x)} \, dx=\frac {\frac {2\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{a^4-2\,a^2\,b^2+b^4}-\frac {2\,\left (5\,a^2\,b-2\,b^3\right )}{3\,\left (a^4-2\,a^2\,b^2+b^4\right )}+\frac {2\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{a^4-2\,a^2\,b^2+b^4}+\frac {4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (2\,a\,b^2-5\,a^3\right )}{3\,\left (a^4-2\,a^2\,b^2+b^4\right )}+\frac {4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (2\,a^2\,b-b^3\right )}{a^4-2\,a^2\,b^2+b^4}-\frac {2\,a^2\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{a^4-2\,a^2\,b^2+b^4}}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )}+\frac {2\,a^4\,\mathrm {atan}\left (\frac {\frac {a^4\,\left (2\,a^4\,b-4\,a^2\,b^3+2\,b^5\right )}{{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}}+\frac {2\,a^5\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (a^4-2\,a^2\,b^2+b^4\right )}{{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}}}{2\,a^4}\right )}{d\,{\left (a+b\right )}^{5/2}\,{\left (a-b\right )}^{5/2}} \] Input:

int(tan(c + d*x)^4/(a + b*sin(c + d*x)),x)
 

Output:

((2*a^3*tan(c/2 + (d*x)/2))/(a^4 + b^4 - 2*a^2*b^2) - (2*(5*a^2*b - 2*b^3) 
)/(3*(a^4 + b^4 - 2*a^2*b^2)) + (2*a^3*tan(c/2 + (d*x)/2)^5)/(a^4 + b^4 - 
2*a^2*b^2) + (4*tan(c/2 + (d*x)/2)^3*(2*a*b^2 - 5*a^3))/(3*(a^4 + b^4 - 2* 
a^2*b^2)) + (4*tan(c/2 + (d*x)/2)^2*(2*a^2*b - b^3))/(a^4 + b^4 - 2*a^2*b^ 
2) - (2*a^2*b*tan(c/2 + (d*x)/2)^4)/(a^4 + b^4 - 2*a^2*b^2))/(d*(3*tan(c/2 
 + (d*x)/2)^2 - 3*tan(c/2 + (d*x)/2)^4 + tan(c/2 + (d*x)/2)^6 - 1)) + (2*a 
^4*atan(((a^4*(2*a^4*b + 2*b^5 - 4*a^2*b^3))/((a + b)^(5/2)*(a - b)^(5/2)) 
 + (2*a^5*tan(c/2 + (d*x)/2)*(a^4 + b^4 - 2*a^2*b^2))/((a + b)^(5/2)*(a - 
b)^(5/2)))/(2*a^4)))/(d*(a + b)^(5/2)*(a - b)^(5/2))
 

Reduce [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 827, normalized size of antiderivative = 4.67 \[ \int \frac {\tan ^4(c+d x)}{a+b \sin (c+d x)} \, dx =\text {Too large to display} \] Input:

int(tan(d*x+c)^4/(a+b*sin(d*x+c)),x)
 

Output:

(6*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2)*a + b)/sqrt(a**2 - b**2))*cos( 
c + d*x)*sin(c + d*x)**2*a**5 - 6*sqrt(a**2 - b**2)*atan((tan((c + d*x)/2) 
*a + b)/sqrt(a**2 - b**2))*cos(c + d*x)*a**5 + cos(c + d*x)*sin(c + d*x)** 
2*tan(c + d*x)**3*a**6 - 3*cos(c + d*x)*sin(c + d*x)**2*tan(c + d*x)**3*a* 
*4*b**2 + 3*cos(c + d*x)*sin(c + d*x)**2*tan(c + d*x)**3*a**2*b**4 - cos(c 
 + d*x)*sin(c + d*x)**2*tan(c + d*x)**3*b**6 - 3*cos(c + d*x)*sin(c + d*x) 
**2*tan(c + d*x)*a**6 + 9*cos(c + d*x)*sin(c + d*x)**2*tan(c + d*x)*a**4*b 
**2 - 9*cos(c + d*x)*sin(c + d*x)**2*tan(c + d*x)*a**2*b**4 + 3*cos(c + d* 
x)*sin(c + d*x)**2*tan(c + d*x)*b**6 + 3*cos(c + d*x)*sin(c + d*x)**2*a**5 
*b - 5*cos(c + d*x)*sin(c + d*x)**2*a**3*b**3 + 2*cos(c + d*x)*sin(c + d*x 
)**2*a*b**5 - cos(c + d*x)*tan(c + d*x)**3*a**6 + 3*cos(c + d*x)*tan(c + d 
*x)**3*a**4*b**2 - 3*cos(c + d*x)*tan(c + d*x)**3*a**2*b**4 + cos(c + d*x) 
*tan(c + d*x)**3*b**6 + 3*cos(c + d*x)*tan(c + d*x)*a**6 - 9*cos(c + d*x)* 
tan(c + d*x)*a**4*b**2 + 9*cos(c + d*x)*tan(c + d*x)*a**2*b**4 - 3*cos(c + 
 d*x)*tan(c + d*x)*b**6 - 3*cos(c + d*x)*a**5*b + 5*cos(c + d*x)*a**3*b**3 
 - 2*cos(c + d*x)*a*b**5 - 7*sin(c + d*x)**3*a**4*b**2 + 11*sin(c + d*x)** 
3*a**2*b**4 - 4*sin(c + d*x)**3*b**6 + 6*sin(c + d*x)**2*a**5*b - 9*sin(c 
+ d*x)**2*a**3*b**3 + 3*sin(c + d*x)**2*a*b**5 + 6*sin(c + d*x)*a**4*b**2 
- 9*sin(c + d*x)*a**2*b**4 + 3*sin(c + d*x)*b**6 - 5*a**5*b + 7*a**3*b**3 
- 2*a*b**5)/(3*cos(c + d*x)*a*d*(sin(c + d*x)**2*a**6 - 3*sin(c + d*x)*...