\(\int \frac {\csc ^3(e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx\) [1391]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 557 \[ \int \frac {\csc ^3(e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=-\frac {3 \arctan \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{4 a f \sqrt {g}}-\frac {b^2 \arctan \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{a^3 f \sqrt {g}}+\frac {b^{7/2} \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{a^3 \left (-a^2+b^2\right )^{3/4} f \sqrt {g}}-\frac {3 \text {arctanh}\left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{4 a f \sqrt {g}}-\frac {b^2 \text {arctanh}\left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{a^3 f \sqrt {g}}+\frac {b^{7/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{a^3 \left (-a^2+b^2\right )^{3/4} f \sqrt {g}}+\frac {b \sqrt {g \cos (e+f x)} \csc (e+f x)}{a^2 f g}-\frac {\sqrt {g \cos (e+f x)} \csc ^2(e+f x)}{2 a f g}-\frac {b \sqrt {\cos (e+f x)} \operatorname {EllipticF}\left (\frac {1}{2} (e+f x),2\right )}{a^2 f \sqrt {g \cos (e+f x)}}-\frac {b^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{a^2 \left (a^2-b \left (b-\sqrt {-a^2+b^2}\right )\right ) f \sqrt {g \cos (e+f x)}}-\frac {b^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{a^2 \left (a^2-b \left (b+\sqrt {-a^2+b^2}\right )\right ) f \sqrt {g \cos (e+f x)}} \] Output:

-3/4*arctan((g*cos(f*x+e))^(1/2)/g^(1/2))/a/f/g^(1/2)-b^2*arctan((g*cos(f* 
x+e))^(1/2)/g^(1/2))/a^3/f/g^(1/2)+b^(7/2)*arctan(b^(1/2)*(g*cos(f*x+e))^( 
1/2)/(-a^2+b^2)^(1/4)/g^(1/2))/a^3/(-a^2+b^2)^(3/4)/f/g^(1/2)-3/4*arctanh( 
(g*cos(f*x+e))^(1/2)/g^(1/2))/a/f/g^(1/2)-b^2*arctanh((g*cos(f*x+e))^(1/2) 
/g^(1/2))/a^3/f/g^(1/2)+b^(7/2)*arctanh(b^(1/2)*(g*cos(f*x+e))^(1/2)/(-a^2 
+b^2)^(1/4)/g^(1/2))/a^3/(-a^2+b^2)^(3/4)/f/g^(1/2)+b*(g*cos(f*x+e))^(1/2) 
*csc(f*x+e)/a^2/f/g-1/2*(g*cos(f*x+e))^(1/2)*csc(f*x+e)^2/a/f/g-b*cos(f*x+ 
e)^(1/2)*InverseJacobiAM(1/2*f*x+1/2*e,2^(1/2))/a^2/f/(g*cos(f*x+e))^(1/2) 
-b^3*cos(f*x+e)^(1/2)*EllipticPi(sin(1/2*f*x+1/2*e),2*b/(b-(-a^2+b^2)^(1/2 
)),2^(1/2))/a^2/(a^2-b*(b-(-a^2+b^2)^(1/2)))/f/(g*cos(f*x+e))^(1/2)-b^3*co 
s(f*x+e)^(1/2)*EllipticPi(sin(1/2*f*x+1/2*e),2*b/(b+(-a^2+b^2)^(1/2)),2^(1 
/2))/a^2/(a^2-b*(b+(-a^2+b^2)^(1/2)))/f/(g*cos(f*x+e))^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 31.40 (sec) , antiderivative size = 2129, normalized size of antiderivative = 3.82 \[ \int \frac {\csc ^3(e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\text {Result too large to show} \] Input:

Integrate[Csc[e + f*x]^3/(Sqrt[g*Cos[e + f*x]]*(a + b*Sin[e + f*x])),x]
 

Output:

(Cos[e + f*x]*((b*Csc[e + f*x])/a^2 - Csc[e + f*x]^2/(2*a)))/(f*Sqrt[g*Cos 
[e + f*x]]) + (Sqrt[Cos[e + f*x]]*((-2*a*b*(a + b*Sqrt[1 - Cos[e + f*x]^2] 
)*((5*a*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Cos[e + f*x]^2, (b^2*Cos[e 
+ f*x]^2)/(-a^2 + b^2)]*Sqrt[Cos[e + f*x]])/(Sqrt[1 - Cos[e + f*x]^2]*(5*( 
a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2) 
/(-a^2 + b^2)] - 2*(2*b^2*AppellF1[5/4, 1/2, 2, 9/4, Cos[e + f*x]^2, (b^2* 
Cos[e + f*x]^2)/(-a^2 + b^2)] + (-a^2 + b^2)*AppellF1[5/4, 3/2, 1, 9/4, Co 
s[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)])*Cos[e + f*x]^2)*(a^2 + b 
^2*(-1 + Cos[e + f*x]^2))) - ((1/8 - I/8)*Sqrt[b]*(2*ArcTan[1 - ((1 + I)*S 
qrt[b]*Sqrt[Cos[e + f*x]])/(-a^2 + b^2)^(1/4)] - 2*ArcTan[1 + ((1 + I)*Sqr 
t[b]*Sqrt[Cos[e + f*x]])/(-a^2 + b^2)^(1/4)] + Log[Sqrt[-a^2 + b^2] - (1 + 
 I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[e + f*x]] + I*b*Cos[e + f*x]] - Lo 
g[Sqrt[-a^2 + b^2] + (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[e + f*x]] 
 + I*b*Cos[e + f*x]]))/(-a^2 + b^2)^(3/4)))/(Sqrt[1 - Cos[e + f*x]^2]*(b + 
 a*Csc[e + f*x])) - (b^2*(-1 + Cos[e + f*x]^2)*(a + b*Sqrt[1 - Cos[e + f*x 
]^2])*Cos[2*(e + f*x)]*Csc[e + f*x]*((-10*Sqrt[2]*(2*a^2 - b^2)*ArcTan[1 - 
 (Sqrt[2]*Sqrt[b]*Sqrt[Cos[e + f*x]])/(a^2 - b^2)^(1/4)])/(a*Sqrt[b]*(a^2 
- b^2)^(3/4)) + (10*Sqrt[2]*(2*a^2 - b^2)*ArcTan[1 + (Sqrt[2]*Sqrt[b]*Sqrt 
[Cos[e + f*x]])/(a^2 - b^2)^(1/4)])/(a*Sqrt[b]*(a^2 - b^2)^(3/4)) - (20*Ar 
cTan[Sqrt[Cos[e + f*x]]])/a - (16*b*AppellF1[5/4, 1/2, 1, 9/4, Cos[e + ...
 

Rubi [A] (verified)

Time = 1.39 (sec) , antiderivative size = 557, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {3042, 3377, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\csc ^3(e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (e+f x)^3 \sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx\)

\(\Big \downarrow \) 3377

\(\displaystyle \int \left (-\frac {b^3}{a^3 \sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}+\frac {b^2 \csc (e+f x)}{a^3 \sqrt {g \cos (e+f x)}}-\frac {b \csc ^2(e+f x)}{a^2 \sqrt {g \cos (e+f x)}}+\frac {\csc ^3(e+f x)}{a \sqrt {g \cos (e+f x)}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {b^2 \arctan \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{a^3 f \sqrt {g}}-\frac {b^2 \text {arctanh}\left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{a^3 f \sqrt {g}}-\frac {b^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {b^2-a^2}},\frac {1}{2} (e+f x),2\right )}{a^2 f \left (a^2-b \left (b-\sqrt {b^2-a^2}\right )\right ) \sqrt {g \cos (e+f x)}}-\frac {b^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {b^2-a^2}},\frac {1}{2} (e+f x),2\right )}{a^2 f \left (a^2-b \left (\sqrt {b^2-a^2}+b\right )\right ) \sqrt {g \cos (e+f x)}}+\frac {b \csc (e+f x) \sqrt {g \cos (e+f x)}}{a^2 f g}-\frac {b \sqrt {\cos (e+f x)} \operatorname {EllipticF}\left (\frac {1}{2} (e+f x),2\right )}{a^2 f \sqrt {g \cos (e+f x)}}+\frac {b^{7/2} \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{a^3 f \sqrt {g} \left (b^2-a^2\right )^{3/4}}+\frac {b^{7/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{a^3 f \sqrt {g} \left (b^2-a^2\right )^{3/4}}-\frac {3 \arctan \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{4 a f \sqrt {g}}-\frac {3 \text {arctanh}\left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{4 a f \sqrt {g}}-\frac {\csc ^2(e+f x) \sqrt {g \cos (e+f x)}}{2 a f g}\)

Input:

Int[Csc[e + f*x]^3/(Sqrt[g*Cos[e + f*x]]*(a + b*Sin[e + f*x])),x]
 

Output:

(-3*ArcTan[Sqrt[g*Cos[e + f*x]]/Sqrt[g]])/(4*a*f*Sqrt[g]) - (b^2*ArcTan[Sq 
rt[g*Cos[e + f*x]]/Sqrt[g]])/(a^3*f*Sqrt[g]) + (b^(7/2)*ArcTan[(Sqrt[b]*Sq 
rt[g*Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])])/(a^3*(-a^2 + b^2)^(3/4) 
*f*Sqrt[g]) - (3*ArcTanh[Sqrt[g*Cos[e + f*x]]/Sqrt[g]])/(4*a*f*Sqrt[g]) - 
(b^2*ArcTanh[Sqrt[g*Cos[e + f*x]]/Sqrt[g]])/(a^3*f*Sqrt[g]) + (b^(7/2)*Arc 
Tanh[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])])/(a^3*(- 
a^2 + b^2)^(3/4)*f*Sqrt[g]) + (b*Sqrt[g*Cos[e + f*x]]*Csc[e + f*x])/(a^2*f 
*g) - (Sqrt[g*Cos[e + f*x]]*Csc[e + f*x]^2)/(2*a*f*g) - (b*Sqrt[Cos[e + f* 
x]]*EllipticF[(e + f*x)/2, 2])/(a^2*f*Sqrt[g*Cos[e + f*x]]) - (b^3*Sqrt[Co 
s[e + f*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (e + f*x)/2, 2])/(a^2 
*(a^2 - b*(b - Sqrt[-a^2 + b^2]))*f*Sqrt[g*Cos[e + f*x]]) - (b^3*Sqrt[Cos[ 
e + f*x]]*EllipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (e + f*x)/2, 2])/(a^2*( 
a^2 - b*(b + Sqrt[-a^2 + b^2]))*f*Sqrt[g*Cos[e + f*x]])
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3377
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*sin[(e_.) + (f_.)*(x_)]^(n_))/((a 
_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[ExpandTrig[(g*cos[e + 
 f*x])^p, sin[e + f*x]^n/(a + b*sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, 
 g, p}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[n] && (LtQ[n, 0] || IGtQ[p + 1/ 
2, 0])
 
Maple [A] (verified)

Time = 0.84 (sec) , antiderivative size = 287, normalized size of antiderivative = 0.52

method result size
default \(-\frac {\frac {\sqrt {2 g \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}-g}}{2 g \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}}-\frac {3 \ln \left (\frac {-2 g +2 \sqrt {-g}\, \sqrt {2 g \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}-g}}{\cos \left (\frac {f x}{2}+\frac {e}{2}\right )}\right )}{\sqrt {-g}}-\frac {\sqrt {-2 g \sin \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}+g}}{4 g \left (\cos \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )}+\frac {3 \ln \left (\frac {4 \cos \left (\frac {f x}{2}+\frac {e}{2}\right ) g +2 \sqrt {g}\, \sqrt {-2 g \sin \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}+g}-2 g}{\cos \left (\frac {f x}{2}+\frac {e}{2}\right )-1}\right )}{2 \sqrt {g}}+\frac {\sqrt {-2 g \sin \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}+g}}{4 g \left (\cos \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )}+\frac {3 \ln \left (\frac {-4 \cos \left (\frac {f x}{2}+\frac {e}{2}\right ) g +2 \sqrt {g}\, \sqrt {-2 g \sin \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}+g}-2 g}{\cos \left (\frac {f x}{2}+\frac {e}{2}\right )+1}\right )}{2 \sqrt {g}}}{4 a f}\) \(287\)

Input:

int(csc(f*x+e)^3/(g*cos(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x,method=_RETURNVER 
BOSE)
 

Output:

-1/4/a*(1/2/g/cos(1/2*f*x+1/2*e)^2*(2*g*cos(1/2*f*x+1/2*e)^2-g)^(1/2)-3/(- 
g)^(1/2)*ln((-2*g+2*(-g)^(1/2)*(2*g*cos(1/2*f*x+1/2*e)^2-g)^(1/2))/cos(1/2 
*f*x+1/2*e))-1/4/g/(cos(1/2*f*x+1/2*e)-1)*(-2*g*sin(1/2*f*x+1/2*e)^2+g)^(1 
/2)+3/2/g^(1/2)*ln((4*cos(1/2*f*x+1/2*e)*g+2*g^(1/2)*(-2*g*sin(1/2*f*x+1/2 
*e)^2+g)^(1/2)-2*g)/(cos(1/2*f*x+1/2*e)-1))+1/4/g/(cos(1/2*f*x+1/2*e)+1)*( 
-2*g*sin(1/2*f*x+1/2*e)^2+g)^(1/2)+3/2/g^(1/2)*ln((-4*cos(1/2*f*x+1/2*e)*g 
+2*g^(1/2)*(-2*g*sin(1/2*f*x+1/2*e)^2+g)^(1/2)-2*g)/(cos(1/2*f*x+1/2*e)+1) 
))/f
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\csc ^3(e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\text {Timed out} \] Input:

integrate(csc(f*x+e)^3/(g*cos(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, algorithm= 
"fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {\csc ^3(e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\int \frac {\csc ^{3}{\left (e + f x \right )}}{\sqrt {g \cos {\left (e + f x \right )}} \left (a + b \sin {\left (e + f x \right )}\right )}\, dx \] Input:

integrate(csc(f*x+e)**3/(g*cos(f*x+e))**(1/2)/(a+b*sin(f*x+e)),x)
 

Output:

Integral(csc(e + f*x)**3/(sqrt(g*cos(e + f*x))*(a + b*sin(e + f*x))), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\csc ^3(e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(csc(f*x+e)^3/(g*cos(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, algorithm= 
"maxima")
 

Output:

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 

Giac [F]

\[ \int \frac {\csc ^3(e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\int { \frac {\csc \left (f x + e\right )^{3}}{\sqrt {g \cos \left (f x + e\right )} {\left (b \sin \left (f x + e\right ) + a\right )}} \,d x } \] Input:

integrate(csc(f*x+e)^3/(g*cos(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, algorithm= 
"giac")
 

Output:

integrate(csc(f*x + e)^3/(sqrt(g*cos(f*x + e))*(b*sin(f*x + e) + a)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\csc ^3(e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\int \frac {1}{{\sin \left (e+f\,x\right )}^3\,\sqrt {g\,\cos \left (e+f\,x\right )}\,\left (a+b\,\sin \left (e+f\,x\right )\right )} \,d x \] Input:

int(1/(sin(e + f*x)^3*(g*cos(e + f*x))^(1/2)*(a + b*sin(e + f*x))),x)
 

Output:

int(1/(sin(e + f*x)^3*(g*cos(e + f*x))^(1/2)*(a + b*sin(e + f*x))), x)
 

Reduce [F]

\[ \int \frac {\csc ^3(e+f x)}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\frac {\sqrt {g}\, \left (\int \frac {\sqrt {\cos \left (f x +e \right )}\, \csc \left (f x +e \right )^{3}}{\cos \left (f x +e \right ) \sin \left (f x +e \right ) b +\cos \left (f x +e \right ) a}d x \right )}{g} \] Input:

int(csc(f*x+e)^3/(g*cos(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x)
 

Output:

(sqrt(g)*int((sqrt(cos(e + f*x))*csc(e + f*x)**3)/(cos(e + f*x)*sin(e + f* 
x)*b + cos(e + f*x)*a),x))/g