\(\int \frac {\csc ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx\) [1397]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F(-1)]
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 627 \[ \int \frac {\csc ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=-\frac {b \arctan \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{a^2 f g^{3/2}}+\frac {b^{7/2} \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{a^2 \left (-a^2+b^2\right )^{5/4} f g^{3/2}}+\frac {b \text {arctanh}\left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{a^2 f g^{3/2}}-\frac {b^{7/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{a^2 \left (-a^2+b^2\right )^{5/4} f g^{3/2}}-\frac {2 b}{a^2 f g \sqrt {g \cos (e+f x)}}-\frac {\csc (e+f x)}{a f g \sqrt {g \cos (e+f x)}}-\frac {3 \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{a f g^2 \sqrt {\cos (e+f x)}}-\frac {2 b^2 \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{a \left (a^2-b^2\right ) f g^2 \sqrt {\cos (e+f x)}}-\frac {b^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{a \left (a^2-b^2\right ) \left (b-\sqrt {-a^2+b^2}\right ) f g \sqrt {g \cos (e+f x)}}-\frac {b^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{a \left (a^2-b^2\right ) \left (b+\sqrt {-a^2+b^2}\right ) f g \sqrt {g \cos (e+f x)}}+\frac {3 \sin (e+f x)}{a f g \sqrt {g \cos (e+f x)}}-\frac {2 b^2 (b-a \sin (e+f x))}{a^2 \left (a^2-b^2\right ) f g \sqrt {g \cos (e+f x)}} \] Output:

-b*arctan((g*cos(f*x+e))^(1/2)/g^(1/2))/a^2/f/g^(3/2)+b^(7/2)*arctan(b^(1/ 
2)*(g*cos(f*x+e))^(1/2)/(-a^2+b^2)^(1/4)/g^(1/2))/a^2/(-a^2+b^2)^(5/4)/f/g 
^(3/2)+b*arctanh((g*cos(f*x+e))^(1/2)/g^(1/2))/a^2/f/g^(3/2)-b^(7/2)*arcta 
nh(b^(1/2)*(g*cos(f*x+e))^(1/2)/(-a^2+b^2)^(1/4)/g^(1/2))/a^2/(-a^2+b^2)^( 
5/4)/f/g^(3/2)-2*b/a^2/f/g/(g*cos(f*x+e))^(1/2)-csc(f*x+e)/a/f/g/(g*cos(f* 
x+e))^(1/2)-3*(g*cos(f*x+e))^(1/2)*EllipticE(sin(1/2*f*x+1/2*e),2^(1/2))/a 
/f/g^2/cos(f*x+e)^(1/2)-2*b^2*(g*cos(f*x+e))^(1/2)*EllipticE(sin(1/2*f*x+1 
/2*e),2^(1/2))/a/(a^2-b^2)/f/g^2/cos(f*x+e)^(1/2)-b^3*cos(f*x+e)^(1/2)*Ell 
ipticPi(sin(1/2*f*x+1/2*e),2*b/(b-(-a^2+b^2)^(1/2)),2^(1/2))/a/(a^2-b^2)/( 
b-(-a^2+b^2)^(1/2))/f/g/(g*cos(f*x+e))^(1/2)-b^3*cos(f*x+e)^(1/2)*Elliptic 
Pi(sin(1/2*f*x+1/2*e),2*b/(b+(-a^2+b^2)^(1/2)),2^(1/2))/a/(a^2-b^2)/(b+(-a 
^2+b^2)^(1/2))/f/g/(g*cos(f*x+e))^(1/2)+3*sin(f*x+e)/a/f/g/(g*cos(f*x+e))^ 
(1/2)-2*b^2*(b-a*sin(f*x+e))/a^2/(a^2-b^2)/f/g/(g*cos(f*x+e))^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 29.01 (sec) , antiderivative size = 1635, normalized size of antiderivative = 2.61 \[ \int \frac {\csc ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx =\text {Too large to display} \] Input:

Integrate[Csc[e + f*x]^2/((g*Cos[e + f*x])^(3/2)*(a + b*Sin[e + f*x])),x]
 

Output:

-1/4*(Cos[e + f*x]^(3/2)*((-2*(6*a^3 + 2*a*b^2)*(a + b*Sqrt[1 - Cos[e + f* 
x]^2])*((a*AppellF1[3/4, 1/2, 1, 7/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2) 
/(-a^2 + b^2)]*Cos[e + f*x]^(3/2))/(3*(a^2 - b^2)) + ((1/8 + I/8)*(2*ArcTa 
n[1 - ((1 + I)*Sqrt[b]*Sqrt[Cos[e + f*x]])/(-a^2 + b^2)^(1/4)] - 2*ArcTan[ 
1 + ((1 + I)*Sqrt[b]*Sqrt[Cos[e + f*x]])/(-a^2 + b^2)^(1/4)] - Log[Sqrt[-a 
^2 + b^2] - (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[e + f*x]] + I*b*Co 
s[e + f*x]] + Log[Sqrt[-a^2 + b^2] + (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sq 
rt[Cos[e + f*x]] + I*b*Cos[e + f*x]]))/(Sqrt[b]*(-a^2 + b^2)^(1/4))))/(Sqr 
t[1 - Cos[e + f*x]^2]*(b + a*Csc[e + f*x])) - ((7*a^2*b - 5*b^3)*(-1 + Cos 
[e + f*x]^2)*(a + b*Sqrt[1 - Cos[e + f*x]^2])*Csc[e + f*x]*(6*Sqrt[2]*Sqrt 
[b]*(a^2 - b^2)^(3/4)*ArcTan[1 - (Sqrt[2]*Sqrt[b]*Sqrt[Cos[e + f*x]])/(a^2 
 - b^2)^(1/4)] - 6*Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(3/4)*ArcTan[1 + (Sqrt[2]*S 
qrt[b]*Sqrt[Cos[e + f*x]])/(a^2 - b^2)^(1/4)] + 12*(a^2 - b^2)*ArcTan[Sqrt 
[Cos[e + f*x]]] + 8*a*b*AppellF1[3/4, 1/2, 1, 7/4, Cos[e + f*x]^2, (b^2*Co 
s[e + f*x]^2)/(-a^2 + b^2)]*Cos[e + f*x]^(3/2) + 6*a^2*Log[1 - Sqrt[Cos[e 
+ f*x]]] - 6*b^2*Log[1 - Sqrt[Cos[e + f*x]]] - 6*a^2*Log[1 + Sqrt[Cos[e + 
f*x]]] + 6*b^2*Log[1 + Sqrt[Cos[e + f*x]]] - 3*Sqrt[2]*Sqrt[b]*(a^2 - b^2) 
^(3/4)*Log[Sqrt[a^2 - b^2] - Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[e 
+ f*x]] + b*Cos[e + f*x]] + 3*Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(3/4)*Log[Sqrt[a 
^2 - b^2] + Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[e + f*x]] + b*Co...
 

Rubi [A] (verified)

Time = 1.76 (sec) , antiderivative size = 627, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {3042, 3377, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\csc ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (e+f x)^2 (g \cos (e+f x))^{3/2} (a+b \sin (e+f x))}dx\)

\(\Big \downarrow \) 3377

\(\displaystyle \int \left (\frac {b^2}{a^2 (g \cos (e+f x))^{3/2} (a+b \sin (e+f x))}-\frac {b \csc (e+f x)}{a^2 (g \cos (e+f x))^{3/2}}+\frac {\csc ^2(e+f x)}{a (g \cos (e+f x))^{3/2}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {b^{7/2} \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{a^2 f g^{3/2} \left (b^2-a^2\right )^{5/4}}-\frac {b \arctan \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{a^2 f g^{3/2}}-\frac {b^{7/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{a^2 f g^{3/2} \left (b^2-a^2\right )^{5/4}}+\frac {b \text {arctanh}\left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g}}\right )}{a^2 f g^{3/2}}-\frac {2 b^2 E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{a f g^2 \left (a^2-b^2\right ) \sqrt {\cos (e+f x)}}-\frac {2 b^2 (b-a \sin (e+f x))}{a^2 f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}-\frac {b^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {b^2-a^2}},\frac {1}{2} (e+f x),2\right )}{a f g \left (a^2-b^2\right ) \left (b-\sqrt {b^2-a^2}\right ) \sqrt {g \cos (e+f x)}}-\frac {b^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {b^2-a^2}},\frac {1}{2} (e+f x),2\right )}{a f g \left (a^2-b^2\right ) \left (\sqrt {b^2-a^2}+b\right ) \sqrt {g \cos (e+f x)}}-\frac {2 b}{a^2 f g \sqrt {g \cos (e+f x)}}-\frac {3 E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{a f g^2 \sqrt {\cos (e+f x)}}+\frac {3 \sin (e+f x)}{a f g \sqrt {g \cos (e+f x)}}-\frac {\csc (e+f x)}{a f g \sqrt {g \cos (e+f x)}}\)

Input:

Int[Csc[e + f*x]^2/((g*Cos[e + f*x])^(3/2)*(a + b*Sin[e + f*x])),x]
 

Output:

-((b*ArcTan[Sqrt[g*Cos[e + f*x]]/Sqrt[g]])/(a^2*f*g^(3/2))) + (b^(7/2)*Arc 
Tan[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])])/(a^2*(-a 
^2 + b^2)^(5/4)*f*g^(3/2)) + (b*ArcTanh[Sqrt[g*Cos[e + f*x]]/Sqrt[g]])/(a^ 
2*f*g^(3/2)) - (b^(7/2)*ArcTanh[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^ 
2)^(1/4)*Sqrt[g])])/(a^2*(-a^2 + b^2)^(5/4)*f*g^(3/2)) - (2*b)/(a^2*f*g*Sq 
rt[g*Cos[e + f*x]]) - Csc[e + f*x]/(a*f*g*Sqrt[g*Cos[e + f*x]]) - (3*Sqrt[ 
g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2])/(a*f*g^2*Sqrt[Cos[e + f*x]]) - 
(2*b^2*Sqrt[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2])/(a*(a^2 - b^2)*f*g^ 
2*Sqrt[Cos[e + f*x]]) - (b^3*Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b - Sqrt 
[-a^2 + b^2]), (e + f*x)/2, 2])/(a*(a^2 - b^2)*(b - Sqrt[-a^2 + b^2])*f*g* 
Sqrt[g*Cos[e + f*x]]) - (b^3*Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b + Sqrt 
[-a^2 + b^2]), (e + f*x)/2, 2])/(a*(a^2 - b^2)*(b + Sqrt[-a^2 + b^2])*f*g* 
Sqrt[g*Cos[e + f*x]]) + (3*Sin[e + f*x])/(a*f*g*Sqrt[g*Cos[e + f*x]]) - (2 
*b^2*(b - a*Sin[e + f*x]))/(a^2*(a^2 - b^2)*f*g*Sqrt[g*Cos[e + f*x]])
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3377
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*sin[(e_.) + (f_.)*(x_)]^(n_))/((a 
_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[ExpandTrig[(g*cos[e + 
 f*x])^p, sin[e + f*x]^n/(a + b*sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, 
 g, p}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[n] && (LtQ[n, 0] || IGtQ[p + 1/ 
2, 0])
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 5.90 (sec) , antiderivative size = 1755, normalized size of antiderivative = 2.80

method result size
default \(\text {Expression too large to display}\) \(1755\)

Input:

int(csc(f*x+e)^2/(g*cos(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x,method=_RETURNVER 
BOSE)
 

Output:

(-b/g*(-1/a^2/(-g)^(1/2)*ln((-2*g+2*(-g)^(1/2)*(2*g*cos(1/2*f*x+1/2*e)^2-g 
)^(1/2))/cos(1/2*f*x+1/2*e))+1/(2+2^(1/2))/(-2+2^(1/2))/a^2/g^(1/2)*ln((4* 
cos(1/2*f*x+1/2*e)*g+2*g^(1/2)*(-2*g*sin(1/2*f*x+1/2*e)^2+g)^(1/2)-2*g)/(c 
os(1/2*f*x+1/2*e)-1))+1/(2+2^(1/2))/(-2+2^(1/2))/a^2/g^(1/2)*ln((-4*cos(1/ 
2*f*x+1/2*e)*g+2*g^(1/2)*(-2*g*sin(1/2*f*x+1/2*e)^2+g)^(1/2)-2*g)/(cos(1/2 
*f*x+1/2*e)+1))-1/(2+2^(1/2))/(-2+2^(1/2))/(a^2-b^2)*2^(1/2)/g/(cos(1/2*f* 
x+1/2*e)-1/2*2^(1/2))*(-2*g*sin(1/2*f*x+1/2*e)^2+g)^(1/2)+1/(2+2^(1/2))/(- 
2+2^(1/2))/(a^2-b^2)*2^(1/2)/g/(cos(1/2*f*x+1/2*e)+1/2*2^(1/2))*(-2*g*sin( 
1/2*f*x+1/2*e)^2+g)^(1/2)+1/4*b^2/(a-b)/(a+b)/a^2/(g^2*(a^2-b^2)/b^2)^(1/4 
)*2^(1/2)*(ln((2*g*cos(1/2*f*x+1/2*e)^2-g-(g^2*(a^2-b^2)/b^2)^(1/4)*(2*g*c 
os(1/2*f*x+1/2*e)^2-g)^(1/2)*2^(1/2)+(g^2*(a^2-b^2)/b^2)^(1/2))/(2*g*cos(1 
/2*f*x+1/2*e)^2-g+(g^2*(a^2-b^2)/b^2)^(1/4)*(2*g*cos(1/2*f*x+1/2*e)^2-g)^( 
1/2)*2^(1/2)+(g^2*(a^2-b^2)/b^2)^(1/2)))+2*arctan(2^(1/2)/(g^2*(a^2-b^2)/b 
^2)^(1/4)*(2*g*cos(1/2*f*x+1/2*e)^2-g)^(1/2)+1)-2*arctan(-2^(1/2)/(g^2*(a^ 
2-b^2)/b^2)^(1/4)*(2*g*cos(1/2*f*x+1/2*e)^2-g)^(1/2)+1)))+1/2*(g*(-1+2*cos 
(1/2*f*x+1/2*e)^2)*sin(1/2*f*x+1/2*e)^2)^(1/2)*a/g*(1/a^2/cos(1/2*f*x+1/2* 
e)/(-2*g*sin(1/2*f*x+1/2*e)^4+g*sin(1/2*f*x+1/2*e)^2)^(1/2)*(cos(1/2*f*x+1 
/2*e)*(-1+2*sin(1/2*f*x+1/2*e)^2)^(1/2)*(sin(1/2*f*x+1/2*e)^2)^(1/2)*Ellip 
ticF(cos(1/2*f*x+1/2*e),2^(1/2))-cos(1/2*f*x+1/2*e)*(-1+2*sin(1/2*f*x+1/2* 
e)^2)^(1/2)*(sin(1/2*f*x+1/2*e)^2)^(1/2)*EllipticE(cos(1/2*f*x+1/2*e),2...
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\csc ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\text {Timed out} \] Input:

integrate(csc(f*x+e)^2/(g*cos(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, algorithm= 
"fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {\csc ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int \frac {\csc ^{2}{\left (e + f x \right )}}{\left (g \cos {\left (e + f x \right )}\right )^{\frac {3}{2}} \left (a + b \sin {\left (e + f x \right )}\right )}\, dx \] Input:

integrate(csc(f*x+e)**2/(g*cos(f*x+e))**(3/2)/(a+b*sin(f*x+e)),x)
 

Output:

Integral(csc(e + f*x)**2/((g*cos(e + f*x))**(3/2)*(a + b*sin(e + f*x))), x 
)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\csc ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(csc(f*x+e)^2/(g*cos(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, algorithm= 
"maxima")
 

Output:

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 

Giac [F]

\[ \int \frac {\csc ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int { \frac {\csc \left (f x + e\right )^{2}}{\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} {\left (b \sin \left (f x + e\right ) + a\right )}} \,d x } \] Input:

integrate(csc(f*x+e)^2/(g*cos(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, algorithm= 
"giac")
 

Output:

integrate(csc(f*x + e)^2/((g*cos(f*x + e))^(3/2)*(b*sin(f*x + e) + a)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\csc ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int \frac {1}{{\sin \left (e+f\,x\right )}^2\,{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}\,\left (a+b\,\sin \left (e+f\,x\right )\right )} \,d x \] Input:

int(1/(sin(e + f*x)^2*(g*cos(e + f*x))^(3/2)*(a + b*sin(e + f*x))),x)
 

Output:

int(1/(sin(e + f*x)^2*(g*cos(e + f*x))^(3/2)*(a + b*sin(e + f*x))), x)
 

Reduce [F]

\[ \int \frac {\csc ^2(e+f x)}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\frac {\sqrt {g}\, \left (\int \frac {\sqrt {\cos \left (f x +e \right )}\, \csc \left (f x +e \right )^{2}}{\cos \left (f x +e \right )^{2} \sin \left (f x +e \right ) b +\cos \left (f x +e \right )^{2} a}d x \right )}{g^{2}} \] Input:

int(csc(f*x+e)^2/(g*cos(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x)
 

Output:

(sqrt(g)*int((sqrt(cos(e + f*x))*csc(e + f*x)**2)/(cos(e + f*x)**2*sin(e + 
 f*x)*b + cos(e + f*x)**2*a),x))/g**2