\(\int \frac {\sqrt {g \cos (e+f x)}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx\) [1408]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 320 \[ \int \frac {\sqrt {g \cos (e+f x)}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=-\frac {2 (g \cos (e+f x))^{3/2}}{a d f g \sqrt {d \sin (e+f x)}}-\frac {2 \sqrt {2} b \sqrt {g} \operatorname {EllipticPi}\left (-\frac {\sqrt {-a+b}}{\sqrt {a+b}},\arcsin \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {1+\sin (e+f x)}}\right ),-1\right ) \sqrt {\sin (e+f x)}}{a \sqrt {-a+b} \sqrt {a+b} d f \sqrt {d \sin (e+f x)}}+\frac {2 \sqrt {2} b \sqrt {g} \operatorname {EllipticPi}\left (\frac {\sqrt {-a+b}}{\sqrt {a+b}},\arcsin \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {1+\sin (e+f x)}}\right ),-1\right ) \sqrt {\sin (e+f x)}}{a \sqrt {-a+b} \sqrt {a+b} d f \sqrt {d \sin (e+f x)}}-\frac {2 \sqrt {g \cos (e+f x)} E\left (\left .e-\frac {\pi }{4}+f x\right |2\right ) \sqrt {d \sin (e+f x)}}{a d^2 f \sqrt {\sin (2 e+2 f x)}} \] Output:

-2*(g*cos(f*x+e))^(3/2)/a/d/f/g/(d*sin(f*x+e))^(1/2)-2*2^(1/2)*b*g^(1/2)*E 
llipticPi((g*cos(f*x+e))^(1/2)/g^(1/2)/(1+sin(f*x+e))^(1/2),-(-a+b)^(1/2)/ 
(a+b)^(1/2),I)*sin(f*x+e)^(1/2)/a/(-a+b)^(1/2)/(a+b)^(1/2)/d/f/(d*sin(f*x+ 
e))^(1/2)+2*2^(1/2)*b*g^(1/2)*EllipticPi((g*cos(f*x+e))^(1/2)/g^(1/2)/(1+s 
in(f*x+e))^(1/2),(-a+b)^(1/2)/(a+b)^(1/2),I)*sin(f*x+e)^(1/2)/a/(-a+b)^(1/ 
2)/(a+b)^(1/2)/d/f/(d*sin(f*x+e))^(1/2)+2*(g*cos(f*x+e))^(1/2)*EllipticE(c 
os(e+1/4*Pi+f*x),2^(1/2))*(d*sin(f*x+e))^(1/2)/a/d^2/f/sin(2*f*x+2*e)^(1/2 
)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 26.84 (sec) , antiderivative size = 1619, normalized size of antiderivative = 5.06 \[ \int \frac {\sqrt {g \cos (e+f x)}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx =\text {Too large to display} \] Input:

Integrate[Sqrt[g*Cos[e + f*x]]/((d*Sin[e + f*x])^(3/2)*(a + b*Sin[e + f*x] 
)),x]
 

Output:

(-2*Cos[e + f*x]*Sqrt[g*Cos[e + f*x]]*Sin[e + f*x])/(a*f*(d*Sin[e + f*x])^ 
(3/2)) + (Sqrt[g*Cos[e + f*x]]*Sin[e + f*x]^(3/2)*((4*a*(-(b*AppellF1[3/4, 
 -1/4, 1, 7/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)]) + a*App 
ellF1[3/4, 1/4, 1, 7/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] 
)*Cos[e + f*x]^(3/2)*(a + b*Sqrt[1 - Cos[e + f*x]^2])*Sin[e + f*x]^(3/2))/ 
(3*(a^2 - b^2)*(1 - Cos[e + f*x]^2)^(3/4)*(a + b*Sin[e + f*x])) - (b*Sqrt[ 
Tan[e + f*x]]*((3*Sqrt[2]*a^(3/2)*(-2*ArcTan[1 - (Sqrt[2]*(a^2 - b^2)^(1/4 
)*Sqrt[Tan[e + f*x]])/Sqrt[a]] + 2*ArcTan[1 + (Sqrt[2]*(a^2 - b^2)^(1/4)*S 
qrt[Tan[e + f*x]])/Sqrt[a]] - Log[-a + Sqrt[2]*Sqrt[a]*(a^2 - b^2)^(1/4)*S 
qrt[Tan[e + f*x]] - Sqrt[a^2 - b^2]*Tan[e + f*x]] + Log[a + Sqrt[2]*Sqrt[a 
]*(a^2 - b^2)^(1/4)*Sqrt[Tan[e + f*x]] + Sqrt[a^2 - b^2]*Tan[e + f*x]]))/( 
a^2 - b^2)^(1/4) - 8*b*AppellF1[3/4, 1/2, 1, 7/4, -Tan[e + f*x]^2, ((-a^2 
+ b^2)*Tan[e + f*x]^2)/a^2]*Tan[e + f*x]^(3/2))*(b*Tan[e + f*x] + a*Sqrt[1 
 + Tan[e + f*x]^2]))/(6*a^2*Cos[e + f*x]^(3/2)*Sqrt[Sin[e + f*x]]*(a + b*S 
in[e + f*x])*(1 + Tan[e + f*x]^2)^(3/2)) + (Cos[2*(e + f*x)]*Sqrt[Tan[e + 
f*x]]*(b*Tan[e + f*x] + a*Sqrt[1 + Tan[e + f*x]^2])*(56*b*(-3*a^2 + b^2)*A 
ppellF1[3/4, 1/2, 1, 7/4, -Tan[e + f*x]^2, (-1 + b^2/a^2)*Tan[e + f*x]^2]* 
Tan[e + f*x]^(3/2) + 24*b*(-a^2 + b^2)*AppellF1[7/4, 1/2, 1, 11/4, -Tan[e 
+ f*x]^2, (-1 + b^2/a^2)*Tan[e + f*x]^2]*Tan[e + f*x]^(7/2) + 21*a^(3/2)*( 
4*Sqrt[2]*a^(3/2)*ArcTan[1 - Sqrt[2]*Sqrt[Tan[e + f*x]]] - 4*Sqrt[2]*a^...
 

Rubi [A] (verified)

Time = 1.53 (sec) , antiderivative size = 290, normalized size of antiderivative = 0.91, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.351, Rules used = {3042, 3389, 3042, 3050, 3042, 3052, 3042, 3119, 3385, 3042, 3384, 993, 1542}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {g \cos (e+f x)}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {g \cos (e+f x)}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))}dx\)

\(\Big \downarrow \) 3389

\(\displaystyle \frac {\int \frac {\sqrt {g \cos (e+f x)}}{(d \sin (e+f x))^{3/2}}dx}{a}-\frac {b \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)} (a+b \sin (e+f x))}dx}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {g \cos (e+f x)}}{(d \sin (e+f x))^{3/2}}dx}{a}-\frac {b \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)} (a+b \sin (e+f x))}dx}{a d}\)

\(\Big \downarrow \) 3050

\(\displaystyle \frac {-\frac {2 \int \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}dx}{d^2}-\frac {2 (g \cos (e+f x))^{3/2}}{d f g \sqrt {d \sin (e+f x)}}}{a}-\frac {b \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)} (a+b \sin (e+f x))}dx}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {2 \int \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}dx}{d^2}-\frac {2 (g \cos (e+f x))^{3/2}}{d f g \sqrt {d \sin (e+f x)}}}{a}-\frac {b \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)} (a+b \sin (e+f x))}dx}{a d}\)

\(\Big \downarrow \) 3052

\(\displaystyle \frac {-\frac {2 \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)} \int \sqrt {\sin (2 e+2 f x)}dx}{d^2 \sqrt {\sin (2 e+2 f x)}}-\frac {2 (g \cos (e+f x))^{3/2}}{d f g \sqrt {d \sin (e+f x)}}}{a}-\frac {b \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)} (a+b \sin (e+f x))}dx}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {2 \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)} \int \sqrt {\sin (2 e+2 f x)}dx}{d^2 \sqrt {\sin (2 e+2 f x)}}-\frac {2 (g \cos (e+f x))^{3/2}}{d f g \sqrt {d \sin (e+f x)}}}{a}-\frac {b \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)} (a+b \sin (e+f x))}dx}{a d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {-\frac {2 E\left (\left .e+f x-\frac {\pi }{4}\right |2\right ) \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{d^2 f \sqrt {\sin (2 e+2 f x)}}-\frac {2 (g \cos (e+f x))^{3/2}}{d f g \sqrt {d \sin (e+f x)}}}{a}-\frac {b \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)} (a+b \sin (e+f x))}dx}{a d}\)

\(\Big \downarrow \) 3385

\(\displaystyle \frac {-\frac {2 E\left (\left .e+f x-\frac {\pi }{4}\right |2\right ) \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{d^2 f \sqrt {\sin (2 e+2 f x)}}-\frac {2 (g \cos (e+f x))^{3/2}}{d f g \sqrt {d \sin (e+f x)}}}{a}-\frac {b \sqrt {\sin (e+f x)} \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {\sin (e+f x)} (a+b \sin (e+f x))}dx}{a d \sqrt {d \sin (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {2 E\left (\left .e+f x-\frac {\pi }{4}\right |2\right ) \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{d^2 f \sqrt {\sin (2 e+2 f x)}}-\frac {2 (g \cos (e+f x))^{3/2}}{d f g \sqrt {d \sin (e+f x)}}}{a}-\frac {b \sqrt {\sin (e+f x)} \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {\sin (e+f x)} (a+b \sin (e+f x))}dx}{a d \sqrt {d \sin (e+f x)}}\)

\(\Big \downarrow \) 3384

\(\displaystyle \frac {4 \sqrt {2} b g \sqrt {\sin (e+f x)} \int \frac {g \cos (e+f x)}{(\sin (e+f x)+1) \sqrt {1-\frac {\cos ^2(e+f x)}{(\sin (e+f x)+1)^2}} \left ((a+b) g^2+\frac {(a-b) \cos ^2(e+f x) g^2}{(\sin (e+f x)+1)^2}\right )}d\frac {\sqrt {g \cos (e+f x)}}{\sqrt {\sin (e+f x)+1}}}{a d f \sqrt {d \sin (e+f x)}}+\frac {-\frac {2 E\left (\left .e+f x-\frac {\pi }{4}\right |2\right ) \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{d^2 f \sqrt {\sin (2 e+2 f x)}}-\frac {2 (g \cos (e+f x))^{3/2}}{d f g \sqrt {d \sin (e+f x)}}}{a}\)

\(\Big \downarrow \) 993

\(\displaystyle \frac {4 \sqrt {2} b g \sqrt {\sin (e+f x)} \left (\frac {\int \frac {1}{\sqrt {1-\frac {\cos ^2(e+f x)}{(\sin (e+f x)+1)^2}} \left (\sqrt {a+b} g-\frac {\sqrt {b-a} g \cos (e+f x)}{\sin (e+f x)+1}\right )}d\frac {\sqrt {g \cos (e+f x)}}{\sqrt {\sin (e+f x)+1}}}{2 \sqrt {b-a}}-\frac {\int \frac {1}{\sqrt {1-\frac {\cos ^2(e+f x)}{(\sin (e+f x)+1)^2}} \left (\sqrt {a+b} g+\frac {\sqrt {b-a} \cos (e+f x) g}{\sin (e+f x)+1}\right )}d\frac {\sqrt {g \cos (e+f x)}}{\sqrt {\sin (e+f x)+1}}}{2 \sqrt {b-a}}\right )}{a d f \sqrt {d \sin (e+f x)}}+\frac {-\frac {2 E\left (\left .e+f x-\frac {\pi }{4}\right |2\right ) \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{d^2 f \sqrt {\sin (2 e+2 f x)}}-\frac {2 (g \cos (e+f x))^{3/2}}{d f g \sqrt {d \sin (e+f x)}}}{a}\)

\(\Big \downarrow \) 1542

\(\displaystyle \frac {4 \sqrt {2} b g \sqrt {\sin (e+f x)} \left (\frac {\operatorname {EllipticPi}\left (\frac {\sqrt {b-a}}{\sqrt {a+b}},\arcsin \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {\sin (e+f x)+1}}\right ),-1\right )}{2 \sqrt {g} \sqrt {b-a} \sqrt {a+b}}-\frac {\operatorname {EllipticPi}\left (-\frac {\sqrt {b-a}}{\sqrt {a+b}},\arcsin \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {\sin (e+f x)+1}}\right ),-1\right )}{2 \sqrt {g} \sqrt {b-a} \sqrt {a+b}}\right )}{a d f \sqrt {d \sin (e+f x)}}+\frac {-\frac {2 E\left (\left .e+f x-\frac {\pi }{4}\right |2\right ) \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{d^2 f \sqrt {\sin (2 e+2 f x)}}-\frac {2 (g \cos (e+f x))^{3/2}}{d f g \sqrt {d \sin (e+f x)}}}{a}\)

Input:

Int[Sqrt[g*Cos[e + f*x]]/((d*Sin[e + f*x])^(3/2)*(a + b*Sin[e + f*x])),x]
 

Output:

(4*Sqrt[2]*b*g*(-1/2*EllipticPi[-(Sqrt[-a + b]/Sqrt[a + b]), ArcSin[Sqrt[g 
*Cos[e + f*x]]/(Sqrt[g]*Sqrt[1 + Sin[e + f*x]])], -1]/(Sqrt[-a + b]*Sqrt[a 
 + b]*Sqrt[g]) + EllipticPi[Sqrt[-a + b]/Sqrt[a + b], ArcSin[Sqrt[g*Cos[e 
+ f*x]]/(Sqrt[g]*Sqrt[1 + Sin[e + f*x]])], -1]/(2*Sqrt[-a + b]*Sqrt[a + b] 
*Sqrt[g]))*Sqrt[Sin[e + f*x]])/(a*d*f*Sqrt[d*Sin[e + f*x]]) + ((-2*(g*Cos[ 
e + f*x])^(3/2))/(d*f*g*Sqrt[d*Sin[e + f*x]]) - (2*Sqrt[g*Cos[e + f*x]]*El 
lipticE[e - Pi/4 + f*x, 2]*Sqrt[d*Sin[e + f*x]])/(d^2*f*Sqrt[Sin[2*e + 2*f 
*x]]))/a
 

Defintions of rubi rules used

rule 993
Int[(x_)^2/(((a_) + (b_.)*(x_)^4)*Sqrt[(c_) + (d_.)*(x_)^4]), x_Symbol] :> 
With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2* 
b)   Int[1/((r + s*x^2)*Sqrt[c + d*x^4]), x], x] - Simp[s/(2*b)   Int[1/((r 
 - s*x^2)*Sqrt[c + d*x^4]), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
a*d, 0]
 

rule 1542
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[ 
{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x 
], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3050
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[(b*Cos[e + f*x])^(n + 1)*((a*Sin[e + f*x])^(m + 1)/(a 
*b*f*(m + 1))), x] + Simp[(m + n + 2)/(a^2*(m + 1))   Int[(b*Cos[e + f*x])^ 
n*(a*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, - 
1] && IntegersQ[2*m, 2*n]
 

rule 3052
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]] 
, x_Symbol] :> Simp[Sqrt[a*Sin[e + f*x]]*(Sqrt[b*Cos[e + f*x]]/Sqrt[Sin[2*e 
 + 2*f*x]])   Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f}, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3384
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/(Sqrt[sin[(e_.) + (f_.)*(x_)]]*((a_ 
) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[-4*Sqrt[2]*(g/f)   S 
ubst[Int[x^2/(((a + b)*g^2 + (a - b)*x^4)*Sqrt[1 - x^4/g^2]), x], x, Sqrt[g 
*Cos[e + f*x]]/Sqrt[1 + Sin[e + f*x]]], x] /; FreeQ[{a, b, e, f, g}, x] && 
NeQ[a^2 - b^2, 0]
 

rule 3385
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/(Sqrt[(d_)*sin[(e_.) + (f_.)*(x_)]] 
*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[Sqrt[Sin[e + f* 
x]]/Sqrt[d*Sin[e + f*x]]   Int[Sqrt[g*Cos[e + f*x]]/(Sqrt[Sin[e + f*x]]*(a 
+ b*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2 
, 0]
 

rule 3389
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^( 
n_))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[1/a   Int[(g 
*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] - Simp[b/(a*d)   Int[(g*Cos[e + 
 f*x])^p*((d*Sin[e + f*x])^(n + 1)/(a + b*Sin[e + f*x])), x], x] /; FreeQ[{ 
a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[-1 
, p, 1] && LtQ[n, 0]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1598\) vs. \(2(267)=534\).

Time = 3.42 (sec) , antiderivative size = 1599, normalized size of antiderivative = 5.00

method result size
default \(\text {Expression too large to display}\) \(1599\)

Input:

int((g*cos(f*x+e))^(1/2)/(d*sin(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x,method=_R 
ETURNVERBOSE)
 

Output:

4/f*csc(f*x+e)^2/d/(d*sin(f*x+e))^(1/2)*(1-cos(f*x+e))/(csc(f*x+e)^2*(1-co 
s(f*x+e))^2+1)*(g*cos(f*x+e))^(1/2)*(4*EllipticE((csc(f*x+e)-cot(f*x+e)+1) 
^(1/2),1/2*2^(1/2))*a^2*(-a^2+b^2)^(1/2)*(csc(f*x+e)-cot(f*x+e)+1)^(1/2)*( 
-2*csc(f*x+e)+2*cot(f*x+e)+2)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)-4*(-a^2 
+b^2)^(1/2)*(-2*csc(f*x+e)+2*cot(f*x+e)+2)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^ 
(1/2)*(csc(f*x+e)-cot(f*x+e)+1)^(1/2)*EllipticE((csc(f*x+e)-cot(f*x+e)+1)^ 
(1/2),1/2*2^(1/2))*a*b-2*EllipticF((csc(f*x+e)-cot(f*x+e)+1)^(1/2),1/2*2^( 
1/2))*a^2*(-a^2+b^2)^(1/2)*(csc(f*x+e)-cot(f*x+e)+1)^(1/2)*(-2*csc(f*x+e)+ 
2*cot(f*x+e)+2)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)+4*(-a^2+b^2)^(1/2)*El 
lipticF((csc(f*x+e)-cot(f*x+e)+1)^(1/2),1/2*2^(1/2))*(-2*csc(f*x+e)+2*cot( 
f*x+e)+2)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*(csc(f*x+e)-cot(f*x+e)+1)^( 
1/2)*a*b-2*EllipticF((csc(f*x+e)-cot(f*x+e)+1)^(1/2),1/2*2^(1/2))*b^2*(-a^ 
2+b^2)^(1/2)*(csc(f*x+e)-cot(f*x+e)+1)^(1/2)*(-2*csc(f*x+e)+2*cot(f*x+e)+2 
)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)-EllipticPi((csc(f*x+e)-cot(f*x+e)+1 
)^(1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*a*b*(-a^2+b^2)^(1/2)*(csc(f 
*x+e)-cot(f*x+e)+1)^(1/2)*(-2*csc(f*x+e)+2*cot(f*x+e)+2)^(1/2)*(-csc(f*x+e 
)+cot(f*x+e))^(1/2)+EllipticPi((csc(f*x+e)-cot(f*x+e)+1)^(1/2),a/(-b+(-a^2 
+b^2)^(1/2)+a),1/2*2^(1/2))*b^2*(-a^2+b^2)^(1/2)*(csc(f*x+e)-cot(f*x+e)+1) 
^(1/2)*(-2*csc(f*x+e)+2*cot(f*x+e)+2)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2) 
-EllipticPi((csc(f*x+e)-cot(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1...
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {g \cos (e+f x)}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\text {Timed out} \] Input:

integrate((g*cos(f*x+e))^(1/2)/(d*sin(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, al 
gorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {\sqrt {g \cos (e+f x)}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int \frac {\sqrt {g \cos {\left (e + f x \right )}}}{\left (d \sin {\left (e + f x \right )}\right )^{\frac {3}{2}} \left (a + b \sin {\left (e + f x \right )}\right )}\, dx \] Input:

integrate((g*cos(f*x+e))**(1/2)/(d*sin(f*x+e))**(3/2)/(a+b*sin(f*x+e)),x)
 

Output:

Integral(sqrt(g*cos(e + f*x))/((d*sin(e + f*x))**(3/2)*(a + b*sin(e + f*x) 
)), x)
 

Maxima [F]

\[ \int \frac {\sqrt {g \cos (e+f x)}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int { \frac {\sqrt {g \cos \left (f x + e\right )}}{{\left (b \sin \left (f x + e\right ) + a\right )} \left (d \sin \left (f x + e\right )\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((g*cos(f*x+e))^(1/2)/(d*sin(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, al 
gorithm="maxima")
 

Output:

integrate(sqrt(g*cos(f*x + e))/((b*sin(f*x + e) + a)*(d*sin(f*x + e))^(3/2 
)), x)
 

Giac [F]

\[ \int \frac {\sqrt {g \cos (e+f x)}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int { \frac {\sqrt {g \cos \left (f x + e\right )}}{{\left (b \sin \left (f x + e\right ) + a\right )} \left (d \sin \left (f x + e\right )\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((g*cos(f*x+e))^(1/2)/(d*sin(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, al 
gorithm="giac")
 

Output:

integrate(sqrt(g*cos(f*x + e))/((b*sin(f*x + e) + a)*(d*sin(f*x + e))^(3/2 
)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {g \cos (e+f x)}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int \frac {\sqrt {g\,\cos \left (e+f\,x\right )}}{{\left (d\,\sin \left (e+f\,x\right )\right )}^{3/2}\,\left (a+b\,\sin \left (e+f\,x\right )\right )} \,d x \] Input:

int((g*cos(e + f*x))^(1/2)/((d*sin(e + f*x))^(3/2)*(a + b*sin(e + f*x))),x 
)
 

Output:

int((g*cos(e + f*x))^(1/2)/((d*sin(e + f*x))^(3/2)*(a + b*sin(e + f*x))), 
x)
 

Reduce [F]

\[ \int \frac {\sqrt {g \cos (e+f x)}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\frac {\sqrt {g}\, \sqrt {d}\, \left (\int \frac {\sqrt {\sin \left (f x +e \right )}\, \sqrt {\cos \left (f x +e \right )}}{\sin \left (f x +e \right )^{3} b +\sin \left (f x +e \right )^{2} a}d x \right )}{d^{2}} \] Input:

int((g*cos(f*x+e))^(1/2)/(d*sin(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x)
 

Output:

(sqrt(g)*sqrt(d)*int((sqrt(sin(e + f*x))*sqrt(cos(e + f*x)))/(sin(e + f*x) 
**3*b + sin(e + f*x)**2*a),x))/d**2