\(\int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx\) [1413]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (warning: unable to verify)
Maple [B] (warning: unable to verify)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 530 \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=-\frac {a \sqrt {d} g^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} b^2 f}+\frac {a \sqrt {d} g^{3/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} b^2 f}-\frac {a \sqrt {d} g^{3/2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} \left (\sqrt {d}+\sqrt {d} \tan (e+f x)\right )}\right )}{\sqrt {2} b^2 f}-\frac {2 \sqrt {2} \sqrt {-a^2+b^2} \sqrt {d} g^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b-\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b^2 f \sqrt {g \cos (e+f x)}}+\frac {2 \sqrt {2} \sqrt {-a^2+b^2} \sqrt {d} g^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b+\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b^2 f \sqrt {g \cos (e+f x)}}+\frac {g \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}{b f}-\frac {d g^2 \operatorname {EllipticF}\left (e-\frac {\pi }{4}+f x,2\right ) \sqrt {\sin (2 e+2 f x)}}{2 b f \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}} \] Output:

-1/2*a*d^(1/2)*g^(3/2)*arctan(1-2^(1/2)*g^(1/2)*(d*sin(f*x+e))^(1/2)/d^(1/ 
2)/(g*cos(f*x+e))^(1/2))*2^(1/2)/b^2/f+1/2*a*d^(1/2)*g^(3/2)*arctan(1+2^(1 
/2)*g^(1/2)*(d*sin(f*x+e))^(1/2)/d^(1/2)/(g*cos(f*x+e))^(1/2))*2^(1/2)/b^2 
/f-1/2*a*d^(1/2)*g^(3/2)*arctanh(2^(1/2)*g^(1/2)*(d*sin(f*x+e))^(1/2)/(g*c 
os(f*x+e))^(1/2)/(d^(1/2)+d^(1/2)*tan(f*x+e)))*2^(1/2)/b^2/f-2*2^(1/2)*(-a 
^2+b^2)^(1/2)*d^(1/2)*g^2*cos(f*x+e)^(1/2)*EllipticPi((d*sin(f*x+e))^(1/2) 
/d^(1/2)/(1+cos(f*x+e))^(1/2),-a/(b-(-a^2+b^2)^(1/2)),I)/b^2/f/(g*cos(f*x+ 
e))^(1/2)+2*2^(1/2)*(-a^2+b^2)^(1/2)*d^(1/2)*g^2*cos(f*x+e)^(1/2)*Elliptic 
Pi((d*sin(f*x+e))^(1/2)/d^(1/2)/(1+cos(f*x+e))^(1/2),-a/(b+(-a^2+b^2)^(1/2 
)),I)/b^2/f/(g*cos(f*x+e))^(1/2)+g*(g*cos(f*x+e))^(1/2)*(d*sin(f*x+e))^(1/ 
2)/b/f-1/2*d*g^2*InverseJacobiAM(e-1/4*Pi+f*x,2^(1/2))*sin(2*f*x+2*e)^(1/2 
)/b/f/(g*cos(f*x+e))^(1/2)/(d*sin(f*x+e))^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 24.74 (sec) , antiderivative size = 601, normalized size of antiderivative = 1.13 \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=-\frac {(g \cos (e+f x))^{5/2} (d \sin (e+f x))^{3/2} \left (a+b \sqrt {\sin ^2(e+f x)}\right ) \left (\frac {2 a \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{4},1,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )}{a^2-b^2}+\frac {\left (2 a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{4},1,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )}{-a^2 b+b^3}+\frac {5 \left (-5 \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},\frac {3}{4},1,\frac {5}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right ) \left (a^2+b^2 \left (-2+\cos ^2(e+f x)\right )\right )+\left (-4 b^2 \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{4},2,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )+3 \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {5}{4},\frac {7}{4},1,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )\right ) \sin ^2(e+f x) \left (a^2-b^2 \sin ^2(e+f x)\right )\right )}{b \left (-5 \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},\frac {3}{4},1,\frac {5}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )+\left (4 b^2 \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{4},2,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )+3 \left (-a^2+b^2\right ) \operatorname {AppellF1}\left (\frac {5}{4},\frac {7}{4},1,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )\right ) \cos ^2(e+f x)\right ) \sin ^2(e+f x)^{3/4} \left (a^2-b^2 \sin ^2(e+f x)\right )}\right )}{5 d f g \sin ^2(e+f x)^{3/4} (a+b \sin (e+f x))} \] Input:

Integrate[((g*Cos[e + f*x])^(3/2)*Sqrt[d*Sin[e + f*x]])/(a + b*Sin[e + f*x 
]),x]
 

Output:

-1/5*((g*Cos[e + f*x])^(5/2)*(d*Sin[e + f*x])^(3/2)*(a + b*Sqrt[Sin[e + f* 
x]^2])*((2*a*AppellF1[5/4, 1/4, 1, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^ 
2)/(-a^2 + b^2)])/(a^2 - b^2) + ((2*a^2 - b^2)*AppellF1[5/4, 3/4, 1, 9/4, 
Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)])/(-(a^2*b) + b^3) + (5* 
(-5*(a^2 - b^2)*AppellF1[1/4, 3/4, 1, 5/4, Cos[e + f*x]^2, (b^2*Cos[e + f* 
x]^2)/(-a^2 + b^2)]*(a^2 + b^2*(-2 + Cos[e + f*x]^2)) + (-4*b^2*AppellF1[5 
/4, 3/4, 2, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] + 3*(a 
^2 - b^2)*AppellF1[5/4, 7/4, 1, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/ 
(-a^2 + b^2)])*Sin[e + f*x]^2*(a^2 - b^2*Sin[e + f*x]^2)))/(b*(-5*(a^2 - b 
^2)*AppellF1[1/4, 3/4, 1, 5/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 
+ b^2)] + (4*b^2*AppellF1[5/4, 3/4, 2, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f 
*x]^2)/(-a^2 + b^2)] + 3*(-a^2 + b^2)*AppellF1[5/4, 7/4, 1, 9/4, Cos[e + f 
*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)])*Cos[e + f*x]^2)*(Sin[e + f*x]^2 
)^(3/4)*(a^2 - b^2*Sin[e + f*x]^2))))/(d*f*g*(Sin[e + f*x]^2)^(3/4)*(a + b 
*Sin[e + f*x]))
 

Rubi [A] (warning: unable to verify)

Time = 2.83 (sec) , antiderivative size = 643, normalized size of antiderivative = 1.21, number of steps used = 24, number of rules used = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.622, Rules used = {3042, 3380, 3042, 3317, 3042, 3048, 3042, 3053, 3042, 3054, 826, 1476, 1082, 217, 1479, 25, 27, 1103, 3120, 3387, 3042, 3386, 1542}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {d \sin (e+f x)} (g \cos (e+f x))^{3/2}}{a+b \sin (e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {d \sin (e+f x)} (g \cos (e+f x))^{3/2}}{a+b \sin (e+f x)}dx\)

\(\Big \downarrow \) 3380

\(\displaystyle \frac {g^2 \int \frac {\sqrt {d \sin (e+f x)} (a-b \sin (e+f x))}{\sqrt {g \cos (e+f x)}}dx}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {g^2 \int \frac {\sqrt {d \sin (e+f x)} (a-b \sin (e+f x))}{\sqrt {g \cos (e+f x)}}dx}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 3317

\(\displaystyle \frac {g^2 \left (a \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}dx-\frac {b \int \frac {(d \sin (e+f x))^{3/2}}{\sqrt {g \cos (e+f x)}}dx}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {g^2 \left (a \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}dx-\frac {b \int \frac {(d \sin (e+f x))^{3/2}}{\sqrt {g \cos (e+f x)}}dx}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 3048

\(\displaystyle \frac {g^2 \left (a \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}dx-\frac {b \left (\frac {1}{2} d^2 \int \frac {1}{\sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}dx-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {g^2 \left (a \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}dx-\frac {b \left (\frac {1}{2} d^2 \int \frac {1}{\sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}dx-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 3053

\(\displaystyle \frac {g^2 \left (a \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}dx-\frac {b \left (\frac {d^2 \sqrt {\sin (2 e+2 f x)} \int \frac {1}{\sqrt {\sin (2 e+2 f x)}}dx}{2 \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {g^2 \left (a \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}dx-\frac {b \left (\frac {d^2 \sqrt {\sin (2 e+2 f x)} \int \frac {1}{\sqrt {\sin (2 e+2 f x)}}dx}{2 \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 3054

\(\displaystyle \frac {g^2 \left (\frac {2 a d g \int \frac {d \tan (e+f x)}{g \left (\tan ^2(e+f x) d^2+d^2\right )}d\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{f}-\frac {b \left (\frac {d^2 \sqrt {\sin (2 e+2 f x)} \int \frac {1}{\sqrt {\sin (2 e+2 f x)}}dx}{2 \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {g^2 \left (\frac {2 a d g \left (\frac {\int \frac {\tan (e+f x) d+d}{\tan ^2(e+f x) d^2+d^2}d\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{2 g}-\frac {\int \frac {d-d \tan (e+f x)}{\tan ^2(e+f x) d^2+d^2}d\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{2 g}\right )}{f}-\frac {b \left (\frac {d^2 \sqrt {\sin (2 e+2 f x)} \int \frac {1}{\sqrt {\sin (2 e+2 f x)}}dx}{2 \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {g^2 \left (\frac {2 a d g \left (\frac {\frac {\int \frac {1}{\frac {\tan (e+f x) d}{g}+\frac {d}{g}-\frac {\sqrt {2} \sqrt {d \sin (e+f x)} \sqrt {d}}{\sqrt {g} \sqrt {g \cos (e+f x)}}}d\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{2 g}+\frac {\int \frac {1}{\frac {\tan (e+f x) d}{g}+\frac {d}{g}+\frac {\sqrt {2} \sqrt {d \sin (e+f x)} \sqrt {d}}{\sqrt {g} \sqrt {g \cos (e+f x)}}}d\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{2 g}}{2 g}-\frac {\int \frac {d-d \tan (e+f x)}{\tan ^2(e+f x) d^2+d^2}d\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{2 g}\right )}{f}-\frac {b \left (\frac {d^2 \sqrt {\sin (2 e+2 f x)} \int \frac {1}{\sqrt {\sin (2 e+2 f x)}}dx}{2 \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {g^2 \left (\frac {2 a d g \left (\frac {\frac {\int \frac {1}{-\frac {d \tan (e+f x)}{g}-1}d\left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\int \frac {1}{-\frac {d \tan (e+f x)}{g}-1}d\left (\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}+1\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}-\frac {\int \frac {d-d \tan (e+f x)}{\tan ^2(e+f x) d^2+d^2}d\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{2 g}\right )}{f}-\frac {b \left (\frac {d^2 \sqrt {\sin (2 e+2 f x)} \int \frac {1}{\sqrt {\sin (2 e+2 f x)}}dx}{2 \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {g^2 \left (\frac {2 a d g \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}+1\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}-\frac {\int \frac {d-d \tan (e+f x)}{\tan ^2(e+f x) d^2+d^2}d\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{2 g}\right )}{f}-\frac {b \left (\frac {d^2 \sqrt {\sin (2 e+2 f x)} \int \frac {1}{\sqrt {\sin (2 e+2 f x)}}dx}{2 \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {g^2 \left (\frac {2 a d g \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}+1\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt {d}-\frac {2 \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{\sqrt {g} \left (\frac {\tan (e+f x) d}{g}+\frac {d}{g}-\frac {\sqrt {2} \sqrt {d \sin (e+f x)} \sqrt {d}}{\sqrt {g} \sqrt {g \cos (e+f x)}}\right )}d\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{2 \sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {d}+\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}\right )}{\sqrt {g} \left (\frac {\tan (e+f x) d}{g}+\frac {d}{g}+\frac {\sqrt {2} \sqrt {d \sin (e+f x)} \sqrt {d}}{\sqrt {g} \sqrt {g \cos (e+f x)}}\right )}d\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{2 \sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}\right )}{f}-\frac {b \left (\frac {d^2 \sqrt {\sin (2 e+2 f x)} \int \frac {1}{\sqrt {\sin (2 e+2 f x)}}dx}{2 \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {g^2 \left (\frac {2 a d g \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}+1\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}-\frac {\frac {\int \frac {\sqrt {2} \sqrt {d}-\frac {2 \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{\sqrt {g} \left (\frac {\tan (e+f x) d}{g}+\frac {d}{g}-\frac {\sqrt {2} \sqrt {d \sin (e+f x)} \sqrt {d}}{\sqrt {g} \sqrt {g \cos (e+f x)}}\right )}d\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{2 \sqrt {2} \sqrt {d} \sqrt {g}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {d}+\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}\right )}{\sqrt {g} \left (\frac {\tan (e+f x) d}{g}+\frac {d}{g}+\frac {\sqrt {2} \sqrt {d \sin (e+f x)} \sqrt {d}}{\sqrt {g} \sqrt {g \cos (e+f x)}}\right )}d\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{2 \sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}\right )}{f}-\frac {b \left (\frac {d^2 \sqrt {\sin (2 e+2 f x)} \int \frac {1}{\sqrt {\sin (2 e+2 f x)}}dx}{2 \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {g^2 \left (\frac {2 a d g \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}+1\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}-\frac {\frac {\int \frac {\sqrt {2} \sqrt {d}-\frac {2 \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{\frac {\tan (e+f x) d}{g}+\frac {d}{g}-\frac {\sqrt {2} \sqrt {d \sin (e+f x)} \sqrt {d}}{\sqrt {g} \sqrt {g \cos (e+f x)}}}d\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{2 \sqrt {2} \sqrt {d} g}+\frac {\int \frac {\sqrt {d}+\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{\frac {\tan (e+f x) d}{g}+\frac {d}{g}+\frac {\sqrt {2} \sqrt {d \sin (e+f x)} \sqrt {d}}{\sqrt {g} \sqrt {g \cos (e+f x)}}}d\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}}{2 \sqrt {d} g}}{2 g}\right )}{f}-\frac {b \left (\frac {d^2 \sqrt {\sin (2 e+2 f x)} \int \frac {1}{\sqrt {\sin (2 e+2 f x)}}dx}{2 \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {g^2 \left (\frac {2 a d g \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}+1\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}-\frac {\frac {\log \left (\frac {\sqrt {2} \sqrt {d} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+d \tan (e+f x)+d\right )}{2 \sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\log \left (-\frac {\sqrt {2} \sqrt {d} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+d \tan (e+f x)+d\right )}{2 \sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}\right )}{f}-\frac {b \left (\frac {d^2 \sqrt {\sin (2 e+2 f x)} \int \frac {1}{\sqrt {\sin (2 e+2 f x)}}dx}{2 \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {g^2 \left (\frac {2 a d g \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}+1\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}-\frac {\frac {\log \left (\frac {\sqrt {2} \sqrt {d} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+d \tan (e+f x)+d\right )}{2 \sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\log \left (-\frac {\sqrt {2} \sqrt {d} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+d \tan (e+f x)+d\right )}{2 \sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}\right )}{f}-\frac {b \left (\frac {d^2 \sqrt {\sin (2 e+2 f x)} \operatorname {EllipticF}\left (e+f x-\frac {\pi }{4},2\right )}{2 f \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2}\)

\(\Big \downarrow \) 3387

\(\displaystyle \frac {g^2 \left (\frac {2 a d g \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}+1\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}-\frac {\frac {\log \left (\frac {\sqrt {2} \sqrt {d} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+d \tan (e+f x)+d\right )}{2 \sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\log \left (-\frac {\sqrt {2} \sqrt {d} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+d \tan (e+f x)+d\right )}{2 \sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}\right )}{f}-\frac {b \left (\frac {d^2 \sqrt {\sin (2 e+2 f x)} \operatorname {EllipticF}\left (e+f x-\frac {\pi }{4},2\right )}{2 f \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \sqrt {\cos (e+f x)} \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {\cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2 \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {g^2 \left (\frac {2 a d g \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}+1\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}-\frac {\frac {\log \left (\frac {\sqrt {2} \sqrt {d} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+d \tan (e+f x)+d\right )}{2 \sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\log \left (-\frac {\sqrt {2} \sqrt {d} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+d \tan (e+f x)+d\right )}{2 \sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}\right )}{f}-\frac {b \left (\frac {d^2 \sqrt {\sin (2 e+2 f x)} \operatorname {EllipticF}\left (e+f x-\frac {\pi }{4},2\right )}{2 f \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \sqrt {\cos (e+f x)} \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {\cos (e+f x)} (a+b \sin (e+f x))}dx}{b^2 \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3386

\(\displaystyle \frac {g^2 \left (\frac {2 a d g \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}+1\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}-\frac {\frac {\log \left (\frac {\sqrt {2} \sqrt {d} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+d \tan (e+f x)+d\right )}{2 \sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\log \left (-\frac {\sqrt {2} \sqrt {d} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+d \tan (e+f x)+d\right )}{2 \sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}\right )}{f}-\frac {b \left (\frac {d^2 \sqrt {\sin (2 e+2 f x)} \operatorname {EllipticF}\left (e+f x-\frac {\pi }{4},2\right )}{2 f \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \sqrt {\cos (e+f x)} \left (\frac {2 \sqrt {2} d \left (1-\frac {b}{\sqrt {b^2-a^2}}\right ) \int \frac {1}{\left (\left (b-\sqrt {b^2-a^2}\right ) d+\frac {a \sin (e+f x) d}{\cos (e+f x)+1}\right ) \sqrt {1-\frac {\sin ^2(e+f x)}{(\cos (e+f x)+1)^2}}}d\frac {\sqrt {d \sin (e+f x)}}{\sqrt {\cos (e+f x)+1}}}{f}+\frac {2 \sqrt {2} d \left (\frac {b}{\sqrt {b^2-a^2}}+1\right ) \int \frac {1}{\left (\left (b+\sqrt {b^2-a^2}\right ) d+\frac {a \sin (e+f x) d}{\cos (e+f x)+1}\right ) \sqrt {1-\frac {\sin ^2(e+f x)}{(\cos (e+f x)+1)^2}}}d\frac {\sqrt {d \sin (e+f x)}}{\sqrt {\cos (e+f x)+1}}}{f}\right )}{b^2 \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 1542

\(\displaystyle \frac {g^2 \left (\frac {2 a d g \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}+1\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}-\frac {\frac {\log \left (\frac {\sqrt {2} \sqrt {d} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+d \tan (e+f x)+d\right )}{2 \sqrt {2} \sqrt {d} \sqrt {g}}-\frac {\log \left (-\frac {\sqrt {2} \sqrt {d} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+d \tan (e+f x)+d\right )}{2 \sqrt {2} \sqrt {d} \sqrt {g}}}{2 g}\right )}{f}-\frac {b \left (\frac {d^2 \sqrt {\sin (2 e+2 f x)} \operatorname {EllipticF}\left (e+f x-\frac {\pi }{4},2\right )}{2 f \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}-\frac {d \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g}\right )}{d}\right )}{b^2}-\frac {g^2 \left (a^2-b^2\right ) \sqrt {\cos (e+f x)} \left (\frac {2 \sqrt {2} \sqrt {d} \left (1-\frac {b}{\sqrt {b^2-a^2}}\right ) \operatorname {EllipticPi}\left (-\frac {a}{b-\sqrt {b^2-a^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {\cos (e+f x)+1}}\right ),-1\right )}{f \left (b-\sqrt {b^2-a^2}\right )}+\frac {2 \sqrt {2} \sqrt {d} \left (\frac {b}{\sqrt {b^2-a^2}}+1\right ) \operatorname {EllipticPi}\left (-\frac {a}{b+\sqrt {b^2-a^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {\cos (e+f x)+1}}\right ),-1\right )}{f \left (\sqrt {b^2-a^2}+b\right )}\right )}{b^2 \sqrt {g \cos (e+f x)}}\)

Input:

Int[((g*Cos[e + f*x])^(3/2)*Sqrt[d*Sin[e + f*x]])/(a + b*Sin[e + f*x]),x]
 

Output:

-(((a^2 - b^2)*g^2*Sqrt[Cos[e + f*x]]*((2*Sqrt[2]*(1 - b/Sqrt[-a^2 + b^2]) 
*Sqrt[d]*EllipticPi[-(a/(b - Sqrt[-a^2 + b^2])), ArcSin[Sqrt[d*Sin[e + f*x 
]]/(Sqrt[d]*Sqrt[1 + Cos[e + f*x]])], -1])/((b - Sqrt[-a^2 + b^2])*f) + (2 
*Sqrt[2]*(1 + b/Sqrt[-a^2 + b^2])*Sqrt[d]*EllipticPi[-(a/(b + Sqrt[-a^2 + 
b^2])), ArcSin[Sqrt[d*Sin[e + f*x]]/(Sqrt[d]*Sqrt[1 + Cos[e + f*x]])], -1] 
)/((b + Sqrt[-a^2 + b^2])*f)))/(b^2*Sqrt[g*Cos[e + f*x]])) + (g^2*((2*a*d* 
g*((-(ArcTan[1 - (Sqrt[2]*Sqrt[g]*Sqrt[d*Sin[e + f*x]])/(Sqrt[d]*Sqrt[g*Co 
s[e + f*x]])]/(Sqrt[2]*Sqrt[d]*Sqrt[g])) + ArcTan[1 + (Sqrt[2]*Sqrt[g]*Sqr 
t[d*Sin[e + f*x]])/(Sqrt[d]*Sqrt[g*Cos[e + f*x]])]/(Sqrt[2]*Sqrt[d]*Sqrt[g 
]))/(2*g) - (-1/2*Log[d - (Sqrt[2]*Sqrt[d]*Sqrt[g]*Sqrt[d*Sin[e + f*x]])/S 
qrt[g*Cos[e + f*x]] + d*Tan[e + f*x]]/(Sqrt[2]*Sqrt[d]*Sqrt[g]) + Log[d + 
(Sqrt[2]*Sqrt[d]*Sqrt[g]*Sqrt[d*Sin[e + f*x]])/Sqrt[g*Cos[e + f*x]] + d*Ta 
n[e + f*x]]/(2*Sqrt[2]*Sqrt[d]*Sqrt[g]))/(2*g)))/f - (b*(-((d*Sqrt[g*Cos[e 
 + f*x]]*Sqrt[d*Sin[e + f*x]])/(f*g)) + (d^2*EllipticF[e - Pi/4 + f*x, 2]* 
Sqrt[Sin[2*e + 2*f*x]])/(2*f*Sqrt[g*Cos[e + f*x]]*Sqrt[d*Sin[e + f*x]])))/ 
d))/b^2
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1542
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[ 
{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x 
], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3048
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[(-a)*(b*Cos[e + f*x])^(n + 1)*((a*Sin[e + f*x])^(m - 
1)/(b*f*(m + n))), x] + Simp[a^2*((m - 1)/(m + n))   Int[(b*Cos[e + f*x])^n 
*(a*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] 
 && NeQ[m + n, 0] && IntegersQ[2*m, 2*n]
 

rule 3053
Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_ 
)]]), x_Symbol] :> Simp[Sqrt[Sin[2*e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b 
*Cos[e + f*x]])   Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f 
}, x]
 

rule 3054
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k*a*(b/f)   Subst[Int[x^(k 
*(m + 1) - 1)/(a^2 + b^2*x^(2*k)), x], x, (a*Sin[e + f*x])^(1/k)/(b*Cos[e + 
 f*x])^(1/k)], x]] /; FreeQ[{a, b, e, f}, x] && EqQ[m + n, 0] && GtQ[m, 0] 
&& LtQ[m, 1]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3317
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[a   Int[(g*Co 
s[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Simp[b/d   Int[(g*Cos[e + f*x])^ 
p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]
 

rule 3380
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^( 
n_))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[g^2/b^2   In 
t[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n*(a - b*Sin[e + f*x]), x], x] 
- Simp[g^2*((a^2 - b^2)/b^2)   Int[(g*Cos[e + f*x])^(p - 2)*((d*Sin[e + f*x 
])^n/(a + b*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a 
^2 - b^2, 0] && IntegersQ[2*n, 2*p] && GtQ[p, 1]
 

rule 3386
Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[cos[(e_.) + (f_.)*(x_)]]*((a_ 
) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> With[{q = Rt[-a^2 + b^2, 
2]}, Simp[2*Sqrt[2]*d*((b + q)/(f*q))   Subst[Int[1/((d*(b + q) + a*x^2)*Sq 
rt[1 - x^4/d^2]), x], x, Sqrt[d*Sin[e + f*x]]/Sqrt[1 + Cos[e + f*x]]], x] - 
 Simp[2*Sqrt[2]*d*((b - q)/(f*q))   Subst[Int[1/((d*(b - q) + a*x^2)*Sqrt[1 
 - x^4/d^2]), x], x, Sqrt[d*Sin[e + f*x]]/Sqrt[1 + Cos[e + f*x]]], x]] /; F 
reeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 3387
Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.) 
]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[Sqrt[Cos[e + f 
*x]]/Sqrt[g*Cos[e + f*x]]   Int[Sqrt[d*Sin[e + f*x]]/(Sqrt[Cos[e + f*x]]*(a 
 + b*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^ 
2, 0]
 
Maple [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1577 vs. \(2 (433 ) = 866\).

Time = 4.61 (sec) , antiderivative size = 1578, normalized size of antiderivative = 2.98

method result size
default \(\text {Expression too large to display}\) \(1578\)

Input:

int((g*cos(f*x+e))^(3/2)*(d*sin(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x,method=_R 
ETURNVERBOSE)
 

Output:

-1/f*sec(f*x+e)*csc(f*x+e)*(d*sin(f*x+e))^(1/2)*(g*cos(f*x+e))^(1/2)*(I*(- 
1-cos(f*x+e))*(csc(f*x+e)-cot(f*x+e)+1)^(1/2)*(-2*csc(f*x+e)+2*cot(f*x+e)+ 
2)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticPi((csc(f*x+e)-cot(f*x+e)+ 
1)^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-a^2+b^2)^(1/2)*a+I*(1+cos(f*x+e))*Ellipt 
icPi((csc(f*x+e)-cot(f*x+e)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))*(csc(f*x+e)-co 
t(f*x+e)+1)^(1/2)*(-2*csc(f*x+e)+2*cot(f*x+e)+2)^(1/2)*(-csc(f*x+e)+cot(f* 
x+e))^(1/2)*(-a^2+b^2)^(1/2)*a+(-1-cos(f*x+e))*EllipticPi((csc(f*x+e)-cot( 
f*x+e)+1)^(1/2),1/2+1/2*I,1/2*2^(1/2))*(csc(f*x+e)-cot(f*x+e)+1)^(1/2)*(-2 
*csc(f*x+e)+2*cot(f*x+e)+2)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*(-a^2+b^2 
)^(1/2)*a+(-1-cos(f*x+e))*(csc(f*x+e)-cot(f*x+e)+1)^(1/2)*(-2*csc(f*x+e)+2 
*cot(f*x+e)+2)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticPi((csc(f*x+e) 
-cot(f*x+e)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))*(-a^2+b^2)^(1/2)*a+(1+cos(f*x+ 
e))*(csc(f*x+e)-cot(f*x+e)+1)^(1/2)*(-2*csc(f*x+e)+2*cot(f*x+e)+2)^(1/2)*( 
-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticPi((csc(f*x+e)-cot(f*x+e)+1)^(1/2),- 
a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*(-a^2+b^2)^(1/2)*a+(1+cos(f*x+e))*(c 
sc(f*x+e)-cot(f*x+e)+1)^(1/2)*(-2*csc(f*x+e)+2*cot(f*x+e)+2)^(1/2)*(-csc(f 
*x+e)+cot(f*x+e))^(1/2)*EllipticPi((csc(f*x+e)-cot(f*x+e)+1)^(1/2),-a/(b+( 
-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*(-a^2+b^2)^(1/2)*b+(-1-cos(f*x+e))*(csc(f* 
x+e)-cot(f*x+e)+1)^(1/2)*(-2*csc(f*x+e)+2*cot(f*x+e)+2)^(1/2)*(-csc(f*x+e) 
+cot(f*x+e))^(1/2)*EllipticPi((csc(f*x+e)-cot(f*x+e)+1)^(1/2),-a/(b+(-a...
 

Fricas [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\text {Timed out} \] Input:

integrate((g*cos(f*x+e))^(3/2)*(d*sin(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, al 
gorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\int \frac {\sqrt {d \sin {\left (e + f x \right )}} \left (g \cos {\left (e + f x \right )}\right )^{\frac {3}{2}}}{a + b \sin {\left (e + f x \right )}}\, dx \] Input:

integrate((g*cos(f*x+e))**(3/2)*(d*sin(f*x+e))**(1/2)/(a+b*sin(f*x+e)),x)
 

Output:

Integral(sqrt(d*sin(e + f*x))*(g*cos(e + f*x))**(3/2)/(a + b*sin(e + f*x)) 
, x)
 

Maxima [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} \sqrt {d \sin \left (f x + e\right )}}{b \sin \left (f x + e\right ) + a} \,d x } \] Input:

integrate((g*cos(f*x+e))^(3/2)*(d*sin(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, al 
gorithm="maxima")
 

Output:

integrate((g*cos(f*x + e))^(3/2)*sqrt(d*sin(f*x + e))/(b*sin(f*x + e) + a) 
, x)
 

Giac [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} \sqrt {d \sin \left (f x + e\right )}}{b \sin \left (f x + e\right ) + a} \,d x } \] Input:

integrate((g*cos(f*x+e))^(3/2)*(d*sin(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, al 
gorithm="giac")
 

Output:

integrate((g*cos(f*x + e))^(3/2)*sqrt(d*sin(f*x + e))/(b*sin(f*x + e) + a) 
, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}\,\sqrt {d\,\sin \left (e+f\,x\right )}}{a+b\,\sin \left (e+f\,x\right )} \,d x \] Input:

int(((g*cos(e + f*x))^(3/2)*(d*sin(e + f*x))^(1/2))/(a + b*sin(e + f*x)),x 
)
 

Output:

int(((g*cos(e + f*x))^(3/2)*(d*sin(e + f*x))^(1/2))/(a + b*sin(e + f*x)), 
x)
 

Reduce [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\frac {\sqrt {g}\, \sqrt {d}\, g \left (2 \sqrt {\sin \left (f x +e \right )}\, \sqrt {\cos \left (f x +e \right )}-\left (\int \frac {\sqrt {\sin \left (f x +e \right )}\, \sqrt {\cos \left (f x +e \right )}\, \cos \left (f x +e \right )}{\sin \left (f x +e \right )^{2} b +a \sin \left (f x +e \right )}d x \right ) a f +\left (\int \frac {\sqrt {\sin \left (f x +e \right )}\, \sqrt {\cos \left (f x +e \right )}\, \sin \left (f x +e \right )^{2}}{\cos \left (f x +e \right ) \sin \left (f x +e \right ) b +\cos \left (f x +e \right ) a}d x \right ) b f +\left (\int \frac {\sqrt {\sin \left (f x +e \right )}\, \sqrt {\cos \left (f x +e \right )}\, \sin \left (f x +e \right )}{\cos \left (f x +e \right ) \sin \left (f x +e \right ) b +\cos \left (f x +e \right ) a}d x \right ) a f \right )}{b f} \] Input:

int((g*cos(f*x+e))^(3/2)*(d*sin(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x)
 

Output:

(sqrt(g)*sqrt(d)*g*(2*sqrt(sin(e + f*x))*sqrt(cos(e + f*x)) - int((sqrt(si 
n(e + f*x))*sqrt(cos(e + f*x))*cos(e + f*x))/(sin(e + f*x)**2*b + sin(e + 
f*x)*a),x)*a*f + int((sqrt(sin(e + f*x))*sqrt(cos(e + f*x))*sin(e + f*x)** 
2)/(cos(e + f*x)*sin(e + f*x)*b + cos(e + f*x)*a),x)*b*f + int((sqrt(sin(e 
 + f*x))*sqrt(cos(e + f*x))*sin(e + f*x))/(cos(e + f*x)*sin(e + f*x)*b + c 
os(e + f*x)*a),x)*a*f))/(b*f)