\(\int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^4} \, dx\) [265]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 38 \[ \int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^4} \, dx=\frac {\operatorname {Hypergeometric2F1}(4,1+n,2+n,-\sin (c+d x)) \sin ^{1+n}(c+d x)}{a^4 d (1+n)} \] Output:

hypergeom([4, 1+n],[2+n],-sin(d*x+c))*sin(d*x+c)^(1+n)/a^4/d/(1+n)
 

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.00 \[ \int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^4} \, dx=\frac {\operatorname {Hypergeometric2F1}(4,1+n,2+n,-\sin (c+d x)) \sin ^{1+n}(c+d x)}{a^4 d (1+n)} \] Input:

Integrate[(Cos[c + d*x]*Sin[c + d*x]^n)/(a + a*Sin[c + d*x])^4,x]
 

Output:

(Hypergeometric2F1[4, 1 + n, 2 + n, -Sin[c + d*x]]*Sin[c + d*x]^(1 + n))/( 
a^4*d*(1 + n))
 

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {3042, 3312, 74}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a \sin (c+d x)+a)^4} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x) \sin (c+d x)^n}{(a \sin (c+d x)+a)^4}dx\)

\(\Big \downarrow \) 3312

\(\displaystyle \frac {\int \frac {\sin ^n(c+d x)}{(\sin (c+d x) a+a)^4}d(a \sin (c+d x))}{a d}\)

\(\Big \downarrow \) 74

\(\displaystyle \frac {\sin ^{n+1}(c+d x) \operatorname {Hypergeometric2F1}(4,n+1,n+2,-\sin (c+d x))}{a^4 d (n+1)}\)

Input:

Int[(Cos[c + d*x]*Sin[c + d*x]^n)/(a + a*Sin[c + d*x])^4,x]
 

Output:

(Hypergeometric2F1[4, 1 + n, 2 + n, -Sin[c + d*x]]*Sin[c + d*x]^(1 + n))/( 
a^4*d*(1 + n))
 

Defintions of rubi rules used

rule 74
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[c^n*((b*x 
)^(m + 1)/(b*(m + 1)))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*(x/c)], x] 
/; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[m] && (IntegerQ[n] || (GtQ[c, 0] 
 &&  !(EqQ[n, -2^(-1)] && EqQ[c^2 - d^2, 0] && GtQ[-d/(b*c), 0])))
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3312
Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*(( 
c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(b*f)   Su 
bst[Int[(a + x)^m*(c + (d/b)*x)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, 
b, c, d, e, f, m, n}, x]
 
Maple [F]

\[\int \frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )^{n}}{\left (a +a \sin \left (d x +c \right )\right )^{4}}d x\]

Input:

int(cos(d*x+c)*sin(d*x+c)^n/(a+a*sin(d*x+c))^4,x)
 

Output:

int(cos(d*x+c)*sin(d*x+c)^n/(a+a*sin(d*x+c))^4,x)
 

Fricas [F]

\[ \int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^4} \, dx=\int { \frac {\sin \left (d x + c\right )^{n} \cos \left (d x + c\right )}{{\left (a \sin \left (d x + c\right ) + a\right )}^{4}} \,d x } \] Input:

integrate(cos(d*x+c)*sin(d*x+c)^n/(a+a*sin(d*x+c))^4,x, algorithm="fricas" 
)
 

Output:

integral(sin(d*x + c)^n*cos(d*x + c)/(a^4*cos(d*x + c)^4 - 8*a^4*cos(d*x + 
 c)^2 + 8*a^4 - 4*(a^4*cos(d*x + c)^2 - 2*a^4)*sin(d*x + c)), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^4} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)*sin(d*x+c)**n/(a+a*sin(d*x+c))**4,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^4} \, dx=\int { \frac {\sin \left (d x + c\right )^{n} \cos \left (d x + c\right )}{{\left (a \sin \left (d x + c\right ) + a\right )}^{4}} \,d x } \] Input:

integrate(cos(d*x+c)*sin(d*x+c)^n/(a+a*sin(d*x+c))^4,x, algorithm="maxima" 
)
 

Output:

integrate(sin(d*x + c)^n*cos(d*x + c)/(a*sin(d*x + c) + a)^4, x)
 

Giac [F]

\[ \int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^4} \, dx=\int { \frac {\sin \left (d x + c\right )^{n} \cos \left (d x + c\right )}{{\left (a \sin \left (d x + c\right ) + a\right )}^{4}} \,d x } \] Input:

integrate(cos(d*x+c)*sin(d*x+c)^n/(a+a*sin(d*x+c))^4,x, algorithm="giac")
 

Output:

integrate(sin(d*x + c)^n*cos(d*x + c)/(a*sin(d*x + c) + a)^4, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^4} \, dx=\int \frac {\cos \left (c+d\,x\right )\,{\sin \left (c+d\,x\right )}^n}{{\left (a+a\,\sin \left (c+d\,x\right )\right )}^4} \,d x \] Input:

int((cos(c + d*x)*sin(c + d*x)^n)/(a + a*sin(c + d*x))^4,x)
 

Output:

int((cos(c + d*x)*sin(c + d*x)^n)/(a + a*sin(c + d*x))^4, x)
 

Reduce [F]

\[ \int \frac {\cos (c+d x) \sin ^n(c+d x)}{(a+a \sin (c+d x))^4} \, dx =\text {Too large to display} \] Input:

int(cos(d*x+c)*sin(d*x+c)^n/(a+a*sin(d*x+c))^4,x)
 

Output:

(sin(c + d*x)**n - int((sin(c + d*x)**n*cos(c + d*x))/(sin(c + d*x)**5*n - 
 3*sin(c + d*x)**5 + 4*sin(c + d*x)**4*n - 12*sin(c + d*x)**4 + 6*sin(c + 
d*x)**3*n - 18*sin(c + d*x)**3 + 4*sin(c + d*x)**2*n - 12*sin(c + d*x)**2 
+ sin(c + d*x)*n - 3*sin(c + d*x)),x)*sin(c + d*x)**3*d*n**2 + 3*int((sin( 
c + d*x)**n*cos(c + d*x))/(sin(c + d*x)**5*n - 3*sin(c + d*x)**5 + 4*sin(c 
 + d*x)**4*n - 12*sin(c + d*x)**4 + 6*sin(c + d*x)**3*n - 18*sin(c + d*x)* 
*3 + 4*sin(c + d*x)**2*n - 12*sin(c + d*x)**2 + sin(c + d*x)*n - 3*sin(c + 
 d*x)),x)*sin(c + d*x)**3*d*n - 3*int((sin(c + d*x)**n*cos(c + d*x))/(sin( 
c + d*x)**5*n - 3*sin(c + d*x)**5 + 4*sin(c + d*x)**4*n - 12*sin(c + d*x)* 
*4 + 6*sin(c + d*x)**3*n - 18*sin(c + d*x)**3 + 4*sin(c + d*x)**2*n - 12*s 
in(c + d*x)**2 + sin(c + d*x)*n - 3*sin(c + d*x)),x)*sin(c + d*x)**2*d*n** 
2 + 9*int((sin(c + d*x)**n*cos(c + d*x))/(sin(c + d*x)**5*n - 3*sin(c + d* 
x)**5 + 4*sin(c + d*x)**4*n - 12*sin(c + d*x)**4 + 6*sin(c + d*x)**3*n - 1 
8*sin(c + d*x)**3 + 4*sin(c + d*x)**2*n - 12*sin(c + d*x)**2 + sin(c + d*x 
)*n - 3*sin(c + d*x)),x)*sin(c + d*x)**2*d*n - 3*int((sin(c + d*x)**n*cos( 
c + d*x))/(sin(c + d*x)**5*n - 3*sin(c + d*x)**5 + 4*sin(c + d*x)**4*n - 1 
2*sin(c + d*x)**4 + 6*sin(c + d*x)**3*n - 18*sin(c + d*x)**3 + 4*sin(c + d 
*x)**2*n - 12*sin(c + d*x)**2 + sin(c + d*x)*n - 3*sin(c + d*x)),x)*sin(c 
+ d*x)*d*n**2 + 9*int((sin(c + d*x)**n*cos(c + d*x))/(sin(c + d*x)**5*n - 
3*sin(c + d*x)**5 + 4*sin(c + d*x)**4*n - 12*sin(c + d*x)**4 + 6*sin(c ...