\(\int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{3/2}} \, dx\) [6]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 38, antiderivative size = 99 \[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{3/2}} \, dx=-\frac {2 a \cos (e+f x) \log (1-\sin (e+f x))}{c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {\cos (e+f x) \sqrt {a+a \sin (e+f x)}}{c f \sqrt {c-c \sin (e+f x)}} \] Output:

-2*a*cos(f*x+e)*ln(1-sin(f*x+e))/c/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e 
))^(1/2)-cos(f*x+e)*(a+a*sin(f*x+e))^(1/2)/c/f/(c-c*sin(f*x+e))^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.86 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.16 \[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{3/2}} \, dx=-\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 \sqrt {a (1+\sin (e+f x))} \left (-2 i f x+4 \log \left (i-e^{i (e+f x)}\right )+\sin (e+f x)\right )}{f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (c-c \sin (e+f x))^{3/2}} \] Input:

Integrate[(Cos[e + f*x]^2*Sqrt[a + a*Sin[e + f*x]])/(c - c*Sin[e + f*x])^( 
3/2),x]
 

Output:

-(((Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3*Sqrt[a*(1 + Sin[e + f*x])]*((-2 
*I)*f*x + 4*Log[I - E^(I*(e + f*x))] + Sin[e + f*x]))/(f*(Cos[(e + f*x)/2] 
 + Sin[(e + f*x)/2])*(c - c*Sin[e + f*x])^(3/2)))
 

Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.05, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.237, Rules used = {3042, 3320, 3042, 3219, 3042, 3216, 3042, 3146, 16}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^2(e+f x) \sqrt {a \sin (e+f x)+a}}{(c-c \sin (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (e+f x)^2 \sqrt {a \sin (e+f x)+a}}{(c-c \sin (e+f x))^{3/2}}dx\)

\(\Big \downarrow \) 3320

\(\displaystyle \frac {\int \frac {(\sin (e+f x) a+a)^{3/2}}{\sqrt {c-c \sin (e+f x)}}dx}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {(\sin (e+f x) a+a)^{3/2}}{\sqrt {c-c \sin (e+f x)}}dx}{a c}\)

\(\Big \downarrow \) 3219

\(\displaystyle \frac {2 a \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {c-c \sin (e+f x)}}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {c-c \sin (e+f x)}}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}}{a c}\)

\(\Big \downarrow \) 3216

\(\displaystyle \frac {\frac {2 a^2 c \cos (e+f x) \int \frac {\cos (e+f x)}{c-c \sin (e+f x)}dx}{\sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 a^2 c \cos (e+f x) \int \frac {\cos (e+f x)}{c-c \sin (e+f x)}dx}{\sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}}{a c}\)

\(\Big \downarrow \) 3146

\(\displaystyle \frac {-\frac {2 a^2 \cos (e+f x) \int \frac {1}{c-c \sin (e+f x)}d(-c \sin (e+f x))}{f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}}{a c}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {-\frac {2 a^2 \cos (e+f x) \log (c-c \sin (e+f x))}{f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}}{a c}\)

Input:

Int[(Cos[e + f*x]^2*Sqrt[a + a*Sin[e + f*x]])/(c - c*Sin[e + f*x])^(3/2),x 
]
 

Output:

((-2*a^2*Cos[e + f*x]*Log[c - c*Sin[e + f*x]])/(f*Sqrt[a + a*Sin[e + f*x]] 
*Sqrt[c - c*Sin[e + f*x]]) - (a*Cos[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(f* 
Sqrt[c - c*Sin[e + f*x]]))/(a*c)
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3146
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_.), x_Symbol] :> Simp[1/(b^p*f)   Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x 
)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && I 
ntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/ 
2])
 

rule 3216
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)]], x_Symbol] :> Simp[a*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x 
]]*Sqrt[c + d*Sin[e + f*x]]))   Int[Cos[e + f*x]/(c + d*Sin[e + f*x]), x], 
x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0 
]
 

rule 3219
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Simp[a*((2*m - 1)/(m + n 
))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; Fre 
eQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I 
GtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m]) &&  !( 
ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])
 

rule 3320
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(a^(p/ 
2)*c^(p/2))   Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(n + 
p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && 
EqQ[a^2 - b^2, 0] && IntegerQ[p/2]
 
Maple [F]

\[\int \frac {\cos \left (f x +e \right )^{2} \sqrt {a +a \sin \left (f x +e \right )}}{\left (c -c \sin \left (f x +e \right )\right )^{\frac {3}{2}}}d x\]

Input:

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(3/2),x)
 

Output:

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(3/2),x)
 

Fricas [F]

\[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{3/2}} \, dx=\int { \frac {\sqrt {a \sin \left (f x + e\right ) + a} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(3/2),x, al 
gorithm="fricas")
 

Output:

integral(-sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*cos(f*x + e)^ 
2/(c^2*cos(f*x + e)^2 + 2*c^2*sin(f*x + e) - 2*c^2), x)
 

Sympy [F]

\[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{3/2}} \, dx=\int \frac {\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )} \cos ^{2}{\left (e + f x \right )}}{\left (- c \left (\sin {\left (e + f x \right )} - 1\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**(1/2)/(c-c*sin(f*x+e))**(3/2),x)
 

Output:

Integral(sqrt(a*(sin(e + f*x) + 1))*cos(e + f*x)**2/(-c*(sin(e + f*x) - 1) 
)**(3/2), x)
 

Maxima [F]

\[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{3/2}} \, dx=\int { \frac {\sqrt {a \sin \left (f x + e\right ) + a} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(3/2),x, al 
gorithm="maxima")
 

Output:

integrate(sqrt(a*sin(f*x + e) + a)*cos(f*x + e)^2/(-c*sin(f*x + e) + c)^(3 
/2), x)
 

Giac [A] (verification not implemented)

Time = 0.42 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.00 \[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{3/2}} \, dx=-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 2 \, \sqrt {2} \sqrt {c} \log \left ({\left | \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} \sqrt {a}}{c^{2} f \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} \] Input:

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(3/2),x, al 
gorithm="giac")
 

Output:

-sqrt(2)*(sqrt(2)*sqrt(c)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi 
+ 1/2*f*x + 1/2*e)^2 - 2*sqrt(2)*sqrt(c)*log(abs(sin(-1/4*pi + 1/2*f*x + 1 
/2*e)))*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)))*sqrt(a)/(c^2*f*sgn(sin(-1/4*p 
i + 1/2*f*x + 1/2*e)))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{3/2}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^2\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \] Input:

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^(1/2))/(c - c*sin(e + f*x))^(3/2) 
,x)
 

Output:

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^(1/2))/(c - c*sin(e + f*x))^(3/2) 
, x)
 

Reduce [F]

\[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{3/2}} \, dx=\frac {\sqrt {c}\, \sqrt {a}\, \left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \cos \left (f x +e \right )^{2}}{\sin \left (f x +e \right )^{2}-2 \sin \left (f x +e \right )+1}d x \right )}{c^{2}} \] Input:

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(3/2),x)
 

Output:

(sqrt(c)*sqrt(a)*int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1)*cos 
(e + f*x)**2)/(sin(e + f*x)**2 - 2*sin(e + f*x) + 1),x))/c**2