\(\int \frac {\cot ^2(c+d x) \csc (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx\) [348]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-1)]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 29, antiderivative size = 153 \[ \int \frac {\cot ^2(c+d x) \csc (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=-\frac {11 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{4 a^{3/2} d}+\frac {2 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{a^{3/2} d}+\frac {5 \cot (c+d x)}{4 a d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \csc (c+d x)}{2 a d \sqrt {a+a \sin (c+d x)}} \] Output:

-11/4*arctanh(a^(1/2)*cos(d*x+c)/(a+a*sin(d*x+c))^(1/2))/a^(3/2)/d+2*arcta 
nh(1/2*a^(1/2)*cos(d*x+c)*2^(1/2)/(a+a*sin(d*x+c))^(1/2))*2^(1/2)/a^(3/2)/ 
d+5/4*cot(d*x+c)/a/d/(a+a*sin(d*x+c))^(1/2)-1/2*cot(d*x+c)*csc(d*x+c)/a/d/ 
(a+a*sin(d*x+c))^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 3.28 (sec) , antiderivative size = 309, normalized size of antiderivative = 2.02 \[ \int \frac {\cot ^2(c+d x) \csc (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^3 \left (-24-(128+128 i) (-1)^{3/4} \text {arctanh}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (-1+\tan \left (\frac {1}{4} (c+d x)\right )\right )\right )+12 \cot \left (\frac {1}{4} (c+d x)\right )-\csc ^2\left (\frac {1}{4} (c+d x)\right )-44 \log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+44 \log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\sec ^2\left (\frac {1}{4} (c+d x)\right )+\frac {2}{\left (\cos \left (\frac {1}{4} (c+d x)\right )-\sin \left (\frac {1}{4} (c+d x)\right )\right )^2}-\frac {24 \sin \left (\frac {1}{4} (c+d x)\right )}{\cos \left (\frac {1}{4} (c+d x)\right )-\sin \left (\frac {1}{4} (c+d x)\right )}-\frac {2}{\left (\cos \left (\frac {1}{4} (c+d x)\right )+\sin \left (\frac {1}{4} (c+d x)\right )\right )^2}+\frac {24 \sin \left (\frac {1}{4} (c+d x)\right )}{\cos \left (\frac {1}{4} (c+d x)\right )+\sin \left (\frac {1}{4} (c+d x)\right )}+12 \tan \left (\frac {1}{4} (c+d x)\right )\right )}{32 d (a (1+\sin (c+d x)))^{3/2}} \] Input:

Integrate[(Cot[c + d*x]^2*Csc[c + d*x])/(a + a*Sin[c + d*x])^(3/2),x]
 

Output:

((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3*(-24 - (128 + 128*I)*(-1)^(3/4)*A 
rcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(c + d*x)/4])] + 12*Cot[(c + d*x)/ 
4] - Csc[(c + d*x)/4]^2 - 44*Log[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] 
+ 44*Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + Sec[(c + d*x)/4]^2 + 2 
/(Cos[(c + d*x)/4] - Sin[(c + d*x)/4])^2 - (24*Sin[(c + d*x)/4])/(Cos[(c + 
 d*x)/4] - Sin[(c + d*x)/4]) - 2/(Cos[(c + d*x)/4] + Sin[(c + d*x)/4])^2 + 
 (24*Sin[(c + d*x)/4])/(Cos[(c + d*x)/4] + Sin[(c + d*x)/4]) + 12*Tan[(c + 
 d*x)/4]))/(32*d*(a*(1 + Sin[c + d*x]))^(3/2))
 

Rubi [A] (verified)

Time = 1.17 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.09, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.517, Rules used = {3042, 3353, 3042, 3463, 27, 3042, 3463, 27, 3042, 3464, 3042, 3128, 219, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^2(c+d x) \csc (c+d x)}{(a \sin (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^2}{\sin (c+d x)^3 (a \sin (c+d x)+a)^{3/2}}dx\)

\(\Big \downarrow \) 3353

\(\displaystyle \frac {\int \frac {\csc ^3(c+d x) (a-a \sin (c+d x))}{\sqrt {\sin (c+d x) a+a}}dx}{a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a-a \sin (c+d x)}{\sin (c+d x)^3 \sqrt {\sin (c+d x) a+a}}dx}{a^2}\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {\frac {\int -\frac {\csc ^2(c+d x) \left (5 a^2-3 a^2 \sin (c+d x)\right )}{2 \sqrt {\sin (c+d x) a+a}}dx}{2 a}-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}}{a^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\int \frac {\csc ^2(c+d x) \left (5 a^2-3 a^2 \sin (c+d x)\right )}{\sqrt {\sin (c+d x) a+a}}dx}{4 a}-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}}{a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\int \frac {5 a^2-3 a^2 \sin (c+d x)}{\sin (c+d x)^2 \sqrt {\sin (c+d x) a+a}}dx}{4 a}-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}}{a^2}\)

\(\Big \downarrow \) 3463

\(\displaystyle \frac {-\frac {\frac {\int -\frac {\csc (c+d x) \left (11 a^3-5 a^3 \sin (c+d x)\right )}{2 \sqrt {\sin (c+d x) a+a}}dx}{a}-\frac {5 a^2 \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}}{a^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {-\frac {\int \frac {\csc (c+d x) \left (11 a^3-5 a^3 \sin (c+d x)\right )}{\sqrt {\sin (c+d x) a+a}}dx}{2 a}-\frac {5 a^2 \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}}{a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {-\frac {\int \frac {11 a^3-5 a^3 \sin (c+d x)}{\sin (c+d x) \sqrt {\sin (c+d x) a+a}}dx}{2 a}-\frac {5 a^2 \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}}{a^2}\)

\(\Big \downarrow \) 3464

\(\displaystyle \frac {-\frac {-\frac {11 a^2 \int \csc (c+d x) \sqrt {\sin (c+d x) a+a}dx-16 a^3 \int \frac {1}{\sqrt {\sin (c+d x) a+a}}dx}{2 a}-\frac {5 a^2 \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}}{a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {-\frac {11 a^2 \int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx-16 a^3 \int \frac {1}{\sqrt {\sin (c+d x) a+a}}dx}{2 a}-\frac {5 a^2 \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}}{a^2}\)

\(\Big \downarrow \) 3128

\(\displaystyle \frac {-\frac {-\frac {11 a^2 \int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx+\frac {32 a^3 \int \frac {1}{2 a-\frac {a^2 \cos ^2(c+d x)}{\sin (c+d x) a+a}}d\frac {a \cos (c+d x)}{\sqrt {\sin (c+d x) a+a}}}{d}}{2 a}-\frac {5 a^2 \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}}{a^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {-\frac {-\frac {11 a^2 \int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx+\frac {16 \sqrt {2} a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{d}}{2 a}-\frac {5 a^2 \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}}{a^2}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {-\frac {-\frac {\frac {16 \sqrt {2} a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{d}-\frac {22 a^3 \int \frac {1}{a-\frac {a^2 \cos ^2(c+d x)}{\sin (c+d x) a+a}}d\frac {a \cos (c+d x)}{\sqrt {\sin (c+d x) a+a}}}{d}}{2 a}-\frac {5 a^2 \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}}{a^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {-\frac {-\frac {\frac {16 \sqrt {2} a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{d}-\frac {22 a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{d}}{2 a}-\frac {5 a^2 \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}-\frac {a \cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}}{a^2}\)

Input:

Int[(Cot[c + d*x]^2*Csc[c + d*x])/(a + a*Sin[c + d*x])^(3/2),x]
 

Output:

(-1/2*(a*Cot[c + d*x]*Csc[c + d*x])/(d*Sqrt[a + a*Sin[c + d*x]]) - (-1/2*( 
(-22*a^(5/2)*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/d + 
 (16*Sqrt[2]*a^(5/2)*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Si 
n[c + d*x]])])/d)/a - (5*a^2*Cot[c + d*x])/(d*Sqrt[a + a*Sin[c + d*x]]))/( 
4*a))/a^2
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3353
Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + 
(b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[1/b^2   Int[(d*Sin[e 
 + f*x])^n*(a + b*Sin[e + f*x])^(m + 1)*(a - b*Sin[e + f*x]), x], x] /; Fre 
eQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && (ILtQ[m, 0] ||  !IGtQ[ 
n, 0])
 

rule 3463
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
+ 1)/(f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*(n + 1)*(c^2 - d^2))   Int[(a 
 + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 
1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e + f*x], x], 
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && Eq 
Q[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m 
 + 1/2, 0])
 

rule 3464
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A 
*b - a*B)/(b*c - a*d)   Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Simp[(B*c 
- A*d)/(b*c - a*d)   Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], 
 x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0]
 
Maple [A] (verified)

Time = 0.35 (sec) , antiderivative size = 164, normalized size of antiderivative = 1.07

method result size
default \(\frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (-11 a^{4} \operatorname {arctanh}\left (\frac {\sqrt {-a \left (\sin \left (d x +c \right )-1\right )}}{\sqrt {a}}\right ) \sin \left (d x +c \right )^{2}+8 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a^{4} \sin \left (d x +c \right )^{2}-5 \left (-a \left (\sin \left (d x +c \right )-1\right )\right )^{\frac {3}{2}} a^{\frac {5}{2}}+3 \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, a^{\frac {7}{2}}\right )}{4 a^{\frac {11}{2}} \sin \left (d x +c \right )^{2} \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(164\)

Input:

int(cot(d*x+c)^2*csc(d*x+c)/(a+a*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE 
)
 

Output:

1/4/a^(11/2)*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(-11*a^4*arctanh((-a 
*(sin(d*x+c)-1))^(1/2)/a^(1/2))*sin(d*x+c)^2+8*2^(1/2)*arctanh(1/2*(-a*(si 
n(d*x+c)-1))^(1/2)*2^(1/2)/a^(1/2))*a^4*sin(d*x+c)^2-5*(-a*(sin(d*x+c)-1)) 
^(3/2)*a^(5/2)+3*(-a*(sin(d*x+c)-1))^(1/2)*a^(7/2))/sin(d*x+c)^2/cos(d*x+c 
)/(a+a*sin(d*x+c))^(1/2)/d
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 508 vs. \(2 (128) = 256\).

Time = 0.10 (sec) , antiderivative size = 508, normalized size of antiderivative = 3.32 \[ \int \frac {\cot ^2(c+d x) \csc (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {11 \, {\left (\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) + \frac {16 \, \sqrt {2} {\left (a \cos \left (d x + c\right )^{3} + a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} - a\right )} \sin \left (d x + c\right ) - a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + \frac {2 \, \sqrt {2} \sqrt {a \sin \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{\sqrt {a}} + 3 \, \cos \left (d x + c\right ) + 2}{\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right )}{\sqrt {a}} - 4 \, {\left (5 \, \cos \left (d x + c\right )^{2} + {\left (5 \, \cos \left (d x + c\right ) + 7\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 7\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{16 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + a^{2} d \cos \left (d x + c\right )^{2} - a^{2} d \cos \left (d x + c\right ) - a^{2} d + {\left (a^{2} d \cos \left (d x + c\right )^{2} - a^{2} d\right )} \sin \left (d x + c\right )\right )}} \] Input:

integrate(cot(d*x+c)^2*csc(d*x+c)/(a+a*sin(d*x+c))^(3/2),x, algorithm="fri 
cas")
 

Output:

1/16*(11*(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + 
 c) - cos(d*x + c) - 1)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 
 - 4*(cos(d*x + c)^2 + (cos(d*x + c) + 3)*sin(d*x + c) - 2*cos(d*x + c) - 
3)*sqrt(a*sin(d*x + c) + a)*sqrt(a) - 9*a*cos(d*x + c) + (a*cos(d*x + c)^2 
 + 8*a*cos(d*x + c) - a)*sin(d*x + c) - a)/(cos(d*x + c)^3 + cos(d*x + c)^ 
2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)) + 16*sqrt(2)*(a 
*cos(d*x + c)^3 + a*cos(d*x + c)^2 - a*cos(d*x + c) + (a*cos(d*x + c)^2 - 
a)*sin(d*x + c) - a)*log(-(cos(d*x + c)^2 - (cos(d*x + c) - 2)*sin(d*x + c 
) + 2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c) - sin(d*x + c) + 1)/s 
qrt(a) + 3*cos(d*x + c) + 2)/(cos(d*x + c)^2 - (cos(d*x + c) + 2)*sin(d*x 
+ c) - cos(d*x + c) - 2))/sqrt(a) - 4*(5*cos(d*x + c)^2 + (5*cos(d*x + c) 
+ 7)*sin(d*x + c) - 2*cos(d*x + c) - 7)*sqrt(a*sin(d*x + c) + a))/(a^2*d*c 
os(d*x + c)^3 + a^2*d*cos(d*x + c)^2 - a^2*d*cos(d*x + c) - a^2*d + (a^2*d 
*cos(d*x + c)^2 - a^2*d)*sin(d*x + c))
 

Sympy [F]

\[ \int \frac {\cot ^2(c+d x) \csc (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\int \frac {\cot ^{2}{\left (c + d x \right )} \csc {\left (c + d x \right )}}{\left (a \left (\sin {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(cot(d*x+c)**2*csc(d*x+c)/(a+a*sin(d*x+c))**(3/2),x)
 

Output:

Integral(cot(c + d*x)**2*csc(c + d*x)/(a*(sin(c + d*x) + 1))**(3/2), x)
 

Maxima [F(-1)]

Timed out. \[ \int \frac {\cot ^2(c+d x) \csc (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(cot(d*x+c)^2*csc(d*x+c)/(a+a*sin(d*x+c))^(3/2),x, algorithm="max 
ima")
 

Output:

Timed out
 

Giac [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 224, normalized size of antiderivative = 1.46 \[ \int \frac {\cot ^2(c+d x) \csc (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=-\frac {\sqrt {2} \sqrt {a} {\left (\frac {11 \, \sqrt {2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right )}{a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {16 \, \log \left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {16 \, \log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {4 \, {\left (10 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 3 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2} a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}\right )}}{16 \, d} \] Input:

integrate(cot(d*x+c)^2*csc(d*x+c)/(a+a*sin(d*x+c))^(3/2),x, algorithm="gia 
c")
 

Output:

-1/16*sqrt(2)*sqrt(a)*(11*sqrt(2)*log(abs(-2*sqrt(2) + 4*sin(-1/4*pi + 1/2 
*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(-1/4*pi + 1/2*d*x + 1/2*c)))/(a^2*sgn 
(cos(-1/4*pi + 1/2*d*x + 1/2*c))) + 16*log(sin(-1/4*pi + 1/2*d*x + 1/2*c) 
+ 1)/(a^2*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 16*log(-sin(-1/4*pi + 1/2 
*d*x + 1/2*c) + 1)/(a^2*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 4*(10*sin(- 
1/4*pi + 1/2*d*x + 1/2*c)^3 - 3*sin(-1/4*pi + 1/2*d*x + 1/2*c))/((2*sin(-1 
/4*pi + 1/2*d*x + 1/2*c)^2 - 1)^2*a^2*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) 
)/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^2(c+d x) \csc (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\int -\frac {{\sin \left (c+d\,x\right )}^2-1}{{\sin \left (c+d\,x\right )}^3\,{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int(cot(c + d*x)^2/(sin(c + d*x)*(a + a*sin(c + d*x))^(3/2)),x)
 

Output:

int(-(sin(c + d*x)^2 - 1)/(sin(c + d*x)^3*(a + a*sin(c + d*x))^(3/2)), x)
 

Reduce [F]

\[ \int \frac {\cot ^2(c+d x) \csc (c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sin \left (d x +c \right )+1}\, \cot \left (d x +c \right )^{2} \csc \left (d x +c \right )}{\sin \left (d x +c \right )^{2}+2 \sin \left (d x +c \right )+1}d x \right )}{a^{2}} \] Input:

int(cot(d*x+c)^2*csc(d*x+c)/(a+a*sin(d*x+c))^(3/2),x)
 

Output:

(sqrt(a)*int((sqrt(sin(c + d*x) + 1)*cot(c + d*x)**2*csc(c + d*x))/(sin(c 
+ d*x)**2 + 2*sin(c + d*x) + 1),x))/a**2