\(\int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2} \, dx\) [9]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 38, antiderivative size = 140 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2} \, dx=-\frac {4 a^2 \cos (e+f x) (c-c \sin (e+f x))^{9/2}}{105 c f \sqrt {a+a \sin (e+f x)}}-\frac {2 a \cos (e+f x) \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{9/2}}{21 c f}-\frac {\cos (e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{9/2}}{7 c f} \] Output:

-4/105*a^2*cos(f*x+e)*(c-c*sin(f*x+e))^(9/2)/c/f/(a+a*sin(f*x+e))^(1/2)-2/ 
21*a*cos(f*x+e)*(a+a*sin(f*x+e))^(1/2)*(c-c*sin(f*x+e))^(9/2)/c/f-1/7*cos( 
f*x+e)*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(9/2)/c/f
 

Mathematica [A] (verified)

Time = 8.62 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.19 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2} \, dx=-\frac {c^3 (-1+\sin (e+f x))^3 (a (1+\sin (e+f x)))^{3/2} \sqrt {c-c \sin (e+f x)} (1050 \cos (2 (e+f x))+420 \cos (4 (e+f x))+70 \cos (6 (e+f x))+4725 \sin (e+f x)+665 \sin (3 (e+f x))+21 \sin (5 (e+f x))-15 \sin (7 (e+f x)))}{6720 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3} \] Input:

Integrate[Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^( 
7/2),x]
 

Output:

-1/6720*(c^3*(-1 + Sin[e + f*x])^3*(a*(1 + Sin[e + f*x]))^(3/2)*Sqrt[c - c 
*Sin[e + f*x]]*(1050*Cos[2*(e + f*x)] + 420*Cos[4*(e + f*x)] + 70*Cos[6*(e 
 + f*x)] + 4725*Sin[e + f*x] + 665*Sin[3*(e + f*x)] + 21*Sin[5*(e + f*x)] 
- 15*Sin[7*(e + f*x)]))/(f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^7*(Cos[(e 
 + f*x)/2] + Sin[(e + f*x)/2])^3)
 

Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.04, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {3042, 3320, 3042, 3219, 3042, 3219, 3042, 3217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^2(e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cos (e+f x)^2 (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}dx\)

\(\Big \downarrow \) 3320

\(\displaystyle \frac {\int (\sin (e+f x) a+a)^{5/2} (c-c \sin (e+f x))^{9/2}dx}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int (\sin (e+f x) a+a)^{5/2} (c-c \sin (e+f x))^{9/2}dx}{a c}\)

\(\Big \downarrow \) 3219

\(\displaystyle \frac {\frac {4}{7} a \int (\sin (e+f x) a+a)^{3/2} (c-c \sin (e+f x))^{9/2}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{9/2}}{7 f}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {4}{7} a \int (\sin (e+f x) a+a)^{3/2} (c-c \sin (e+f x))^{9/2}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{9/2}}{7 f}}{a c}\)

\(\Big \downarrow \) 3219

\(\displaystyle \frac {\frac {4}{7} a \left (\frac {1}{3} a \int \sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{9/2}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{9/2}}{6 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{9/2}}{7 f}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {4}{7} a \left (\frac {1}{3} a \int \sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{9/2}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{9/2}}{6 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{9/2}}{7 f}}{a c}\)

\(\Big \downarrow \) 3217

\(\displaystyle \frac {\frac {4}{7} a \left (-\frac {a^2 \cos (e+f x) (c-c \sin (e+f x))^{9/2}}{15 f \sqrt {a \sin (e+f x)+a}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{9/2}}{6 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{9/2}}{7 f}}{a c}\)

Input:

Int[Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(7/2),x 
]
 

Output:

(-1/7*(a*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(9/2 
))/f + (4*a*(-1/15*(a^2*Cos[e + f*x]*(c - c*Sin[e + f*x])^(9/2))/(f*Sqrt[a 
 + a*Sin[e + f*x]]) - (a*Cos[e + f*x]*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[ 
e + f*x])^(9/2))/(6*f)))/7)/(a*c)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3217
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f 
_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^ 
n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e, f, n 
}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]
 

rule 3219
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Simp[a*((2*m - 1)/(m + n 
))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; Fre 
eQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I 
GtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m]) &&  !( 
ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])
 

rule 3320
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(a^(p/ 
2)*c^(p/2))   Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(n + 
p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && 
EqQ[a^2 - b^2, 0] && IntegerQ[p/2]
 
Maple [F]

\[\int \cos \left (f x +e \right )^{2} \left (a +a \sin \left (f x +e \right )\right )^{\frac {3}{2}} \left (c -c \sin \left (f x +e \right )\right )^{\frac {7}{2}}d x\]

Input:

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(7/2),x)
 

Output:

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(7/2),x)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.83 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2} \, dx=\frac {{\left (35 \, a c^{3} \cos \left (f x + e\right )^{6} - 35 \, a c^{3} - {\left (15 \, a c^{3} \cos \left (f x + e\right )^{6} - 24 \, a c^{3} \cos \left (f x + e\right )^{4} - 32 \, a c^{3} \cos \left (f x + e\right )^{2} - 64 \, a c^{3}\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{105 \, f \cos \left (f x + e\right )} \] Input:

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(7/2),x, al 
gorithm="fricas")
 

Output:

1/105*(35*a*c^3*cos(f*x + e)^6 - 35*a*c^3 - (15*a*c^3*cos(f*x + e)^6 - 24* 
a*c^3*cos(f*x + e)^4 - 32*a*c^3*cos(f*x + e)^2 - 64*a*c^3)*sin(f*x + e))*s 
qrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(f*cos(f*x + e))
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2} \, dx=\text {Timed out} \] Input:

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**(3/2)*(c-c*sin(f*x+e))**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2} \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {7}{2}} \cos \left (f x + e\right )^{2} \,d x } \] Input:

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(7/2),x, al 
gorithm="maxima")
 

Output:

integrate((a*sin(f*x + e) + a)^(3/2)*(-c*sin(f*x + e) + c)^(7/2)*cos(f*x + 
 e)^2, x)
 

Giac [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.07 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2} \, dx=\frac {128 \, {\left (15 \, a c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{14} - 35 \, a c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{12} + 21 \, a c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{10}\right )} \sqrt {a} \sqrt {c}}{105 \, f} \] Input:

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(7/2),x, al 
gorithm="giac")
 

Output:

128/105*(15*a*c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/ 
2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^14 - 35*a*c^3*sgn(cos(-1/4* 
pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1 
/2*f*x + 1/2*e)^12 + 21*a*c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin( 
-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^10)*sqrt(a)*sqr 
t(c)/f
 

Mupad [B] (verification not implemented)

Time = 20.10 (sec) , antiderivative size = 319, normalized size of antiderivative = 2.28 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2} \, dx=\frac {{\mathrm {e}}^{-e\,7{}\mathrm {i}-f\,x\,7{}\mathrm {i}}\,\sqrt {c-c\,\sin \left (e+f\,x\right )}\,\left (\frac {5\,a\,c^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\cos \left (2\,e+2\,f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{16\,f}+\frac {a\,c^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\cos \left (4\,e+4\,f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{8\,f}+\frac {a\,c^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\cos \left (6\,e+6\,f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{48\,f}+\frac {19\,a\,c^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\sin \left (3\,e+3\,f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{96\,f}+\frac {a\,c^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\sin \left (5\,e+5\,f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{160\,f}-\frac {a\,c^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\sin \left (7\,e+7\,f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{224\,f}+\frac {45\,a\,c^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\sin \left (e+f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{32\,f}\right )}{2\,\cos \left (e+f\,x\right )} \] Input:

int(cos(e + f*x)^2*(a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(7/2),x 
)
 

Output:

(exp(- e*7i - f*x*7i)*(c - c*sin(e + f*x))^(1/2)*((5*a*c^3*exp(e*7i + f*x* 
7i)*cos(2*e + 2*f*x)*(a + a*sin(e + f*x))^(1/2))/(16*f) + (a*c^3*exp(e*7i 
+ f*x*7i)*cos(4*e + 4*f*x)*(a + a*sin(e + f*x))^(1/2))/(8*f) + (a*c^3*exp( 
e*7i + f*x*7i)*cos(6*e + 6*f*x)*(a + a*sin(e + f*x))^(1/2))/(48*f) + (19*a 
*c^3*exp(e*7i + f*x*7i)*sin(3*e + 3*f*x)*(a + a*sin(e + f*x))^(1/2))/(96*f 
) + (a*c^3*exp(e*7i + f*x*7i)*sin(5*e + 5*f*x)*(a + a*sin(e + f*x))^(1/2)) 
/(160*f) - (a*c^3*exp(e*7i + f*x*7i)*sin(7*e + 7*f*x)*(a + a*sin(e + f*x)) 
^(1/2))/(224*f) + (45*a*c^3*exp(e*7i + f*x*7i)*sin(e + f*x)*(a + a*sin(e + 
 f*x))^(1/2))/(32*f)))/(2*cos(e + f*x))
 

Reduce [F]

\[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2} \, dx=\sqrt {c}\, \sqrt {a}\, a \,c^{3} \left (-\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \cos \left (f x +e \right )^{2} \sin \left (f x +e \right )^{4}d x \right )+2 \left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \cos \left (f x +e \right )^{2} \sin \left (f x +e \right )^{3}d x \right )-2 \left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \cos \left (f x +e \right )^{2} \sin \left (f x +e \right )d x \right )+\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \cos \left (f x +e \right )^{2}d x \right ) \] Input:

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(7/2),x)
 

Output:

sqrt(c)*sqrt(a)*a*c**3*( - int(sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) 
 + 1)*cos(e + f*x)**2*sin(e + f*x)**4,x) + 2*int(sqrt(sin(e + f*x) + 1)*sq 
rt( - sin(e + f*x) + 1)*cos(e + f*x)**2*sin(e + f*x)**3,x) - 2*int(sqrt(si 
n(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1)*cos(e + f*x)**2*sin(e + f*x),x) 
+ int(sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1)*cos(e + f*x)**2,x))