\(\int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx\) [16]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 38, antiderivative size = 147 \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {\cos (e+f x) (a+a \sin (e+f x))^{3/2}}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {a \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{c^2 f (c-c \sin (e+f x))^{3/2}}-\frac {a^2 \cos (e+f x) \log (1-\sin (e+f x))}{c^3 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \] Output:

1/2*cos(f*x+e)*(a+a*sin(f*x+e))^(3/2)/c/f/(c-c*sin(f*x+e))^(5/2)-a*cos(f*x 
+e)*(a+a*sin(f*x+e))^(1/2)/c^2/f/(c-c*sin(f*x+e))^(3/2)-a^2*cos(f*x+e)*ln( 
1-sin(f*x+e))/c^3/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)
 

Mathematica [A] (verified)

Time = 3.58 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.30 \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx=-\frac {a \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 \sqrt {a (1+\sin (e+f x))} \left (-2-3 \log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )+\cos (2 (e+f x)) \log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )+4 \left (1+\log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )\right ) \sin (e+f x)\right )}{c^3 f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (-1+\sin (e+f x))^3 \sqrt {c-c \sin (e+f x)}} \] Input:

Integrate[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(3/2))/(c - c*Sin[e + f*x]) 
^(7/2),x]
 

Output:

-((a*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3*Sqrt[a*(1 + Sin[e + f*x])]*(- 
2 - 3*Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] + Cos[2*(e + f*x)]*Log[Cos[ 
(e + f*x)/2] - Sin[(e + f*x)/2]] + 4*(1 + Log[Cos[(e + f*x)/2] - Sin[(e + 
f*x)/2]])*Sin[e + f*x]))/(c^3*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-1 
+ Sin[e + f*x])^3*Sqrt[c - c*Sin[e + f*x]]))
 

Rubi [A] (verified)

Time = 1.09 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.05, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.289, Rules used = {3042, 3320, 3042, 3218, 3042, 3218, 3042, 3216, 3042, 3146, 16}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^2(e+f x) (a \sin (e+f x)+a)^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (e+f x)^2 (a \sin (e+f x)+a)^{3/2}}{(c-c \sin (e+f x))^{7/2}}dx\)

\(\Big \downarrow \) 3320

\(\displaystyle \frac {\int \frac {(\sin (e+f x) a+a)^{5/2}}{(c-c \sin (e+f x))^{5/2}}dx}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {(\sin (e+f x) a+a)^{5/2}}{(c-c \sin (e+f x))^{5/2}}dx}{a c}\)

\(\Big \downarrow \) 3218

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f (c-c \sin (e+f x))^{5/2}}-\frac {a \int \frac {(\sin (e+f x) a+a)^{3/2}}{(c-c \sin (e+f x))^{3/2}}dx}{c}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f (c-c \sin (e+f x))^{5/2}}-\frac {a \int \frac {(\sin (e+f x) a+a)^{3/2}}{(c-c \sin (e+f x))^{3/2}}dx}{c}}{a c}\)

\(\Big \downarrow \) 3218

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f (c-c \sin (e+f x))^{5/2}}-\frac {a \left (\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f (c-c \sin (e+f x))^{3/2}}-\frac {a \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {c-c \sin (e+f x)}}dx}{c}\right )}{c}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f (c-c \sin (e+f x))^{5/2}}-\frac {a \left (\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f (c-c \sin (e+f x))^{3/2}}-\frac {a \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {c-c \sin (e+f x)}}dx}{c}\right )}{c}}{a c}\)

\(\Big \downarrow \) 3216

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f (c-c \sin (e+f x))^{5/2}}-\frac {a \left (\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f (c-c \sin (e+f x))^{3/2}}-\frac {a^2 \cos (e+f x) \int \frac {\cos (e+f x)}{c-c \sin (e+f x)}dx}{\sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}\right )}{c}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f (c-c \sin (e+f x))^{5/2}}-\frac {a \left (\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f (c-c \sin (e+f x))^{3/2}}-\frac {a^2 \cos (e+f x) \int \frac {\cos (e+f x)}{c-c \sin (e+f x)}dx}{\sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}\right )}{c}}{a c}\)

\(\Big \downarrow \) 3146

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f (c-c \sin (e+f x))^{5/2}}-\frac {a \left (\frac {a^2 \cos (e+f x) \int \frac {1}{c-c \sin (e+f x)}d(-c \sin (e+f x))}{c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f (c-c \sin (e+f x))^{3/2}}\right )}{c}}{a c}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f (c-c \sin (e+f x))^{5/2}}-\frac {a \left (\frac {a^2 \cos (e+f x) \log (c-c \sin (e+f x))}{c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f (c-c \sin (e+f x))^{3/2}}\right )}{c}}{a c}\)

Input:

Int[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(3/2))/(c - c*Sin[e + f*x])^(7/2) 
,x]
 

Output:

((a*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2))/(2*f*(c - c*Sin[e + f*x])^(5/ 
2)) - (a*((a*Cos[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(f*(c - c*Sin[e + f*x] 
)^(3/2)) + (a^2*Cos[e + f*x]*Log[c - c*Sin[e + f*x]])/(c*f*Sqrt[a + a*Sin[ 
e + f*x]]*Sqrt[c - c*Sin[e + f*x]])))/c)/(a*c)
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3146
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_.), x_Symbol] :> Simp[1/(b^p*f)   Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x 
)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && I 
ntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/ 
2])
 

rule 3216
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)]], x_Symbol] :> Simp[a*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x 
]]*Sqrt[c + d*Sin[e + f*x]]))   Int[Cos[e + f*x]/(c + d*Sin[e + f*x]), x], 
x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0 
]
 

rule 3218
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
(m - 1)*((c + d*Sin[e + f*x])^n/(f*(2*n + 1))), x] - Simp[b*((2*m - 1)/(d*( 
2*n + 1)))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), 
 x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b 
^2, 0] && IGtQ[m - 1/2, 0] && LtQ[n, -1] &&  !(ILtQ[m + n, 0] && GtQ[2*m + 
n + 1, 0])
 

rule 3320
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(a^(p/ 
2)*c^(p/2))   Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(n + 
p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && 
EqQ[a^2 - b^2, 0] && IntegerQ[p/2]
 
Maple [F]

\[\int \frac {\cos \left (f x +e \right )^{2} \left (a +a \sin \left (f x +e \right )\right )^{\frac {3}{2}}}{\left (c -c \sin \left (f x +e \right )\right )^{\frac {7}{2}}}d x\]

Input:

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(7/2),x)
 

Output:

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(7/2),x)
 

Fricas [F]

\[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {7}{2}}} \,d x } \] Input:

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(7/2),x, al 
gorithm="fricas")
 

Output:

integral((a*cos(f*x + e)^2*sin(f*x + e) + a*cos(f*x + e)^2)*sqrt(a*sin(f*x 
 + e) + a)*sqrt(-c*sin(f*x + e) + c)/(c^4*cos(f*x + e)^4 - 8*c^4*cos(f*x + 
 e)^2 + 8*c^4 + 4*(c^4*cos(f*x + e)^2 - 2*c^4)*sin(f*x + e)), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx=\text {Timed out} \] Input:

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**(3/2)/(c-c*sin(f*x+e))**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {7}{2}}} \,d x } \] Input:

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(7/2),x, al 
gorithm="maxima")
 

Output:

integrate((a*sin(f*x + e) + a)^(3/2)*cos(f*x + e)^2/(-c*sin(f*x + e) + c)^ 
(7/2), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(7/2),x, al 
gorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^2\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{7/2}} \,d x \] Input:

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^(3/2))/(c - c*sin(e + f*x))^(7/2) 
,x)
 

Output:

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^(3/2))/(c - c*sin(e + f*x))^(7/2) 
, x)
 

Reduce [F]

\[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{7/2}} \, dx=\frac {\sqrt {c}\, \sqrt {a}\, a \left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \cos \left (f x +e \right )^{2} \sin \left (f x +e \right )}{\sin \left (f x +e \right )^{4}-4 \sin \left (f x +e \right )^{3}+6 \sin \left (f x +e \right )^{2}-4 \sin \left (f x +e \right )+1}d x +\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \cos \left (f x +e \right )^{2}}{\sin \left (f x +e \right )^{4}-4 \sin \left (f x +e \right )^{3}+6 \sin \left (f x +e \right )^{2}-4 \sin \left (f x +e \right )+1}d x \right )}{c^{4}} \] Input:

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(7/2),x)
                                                                                    
                                                                                    
 

Output:

(sqrt(c)*sqrt(a)*a*(int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1)* 
cos(e + f*x)**2*sin(e + f*x))/(sin(e + f*x)**4 - 4*sin(e + f*x)**3 + 6*sin 
(e + f*x)**2 - 4*sin(e + f*x) + 1),x) + int((sqrt(sin(e + f*x) + 1)*sqrt( 
- sin(e + f*x) + 1)*cos(e + f*x)**2)/(sin(e + f*x)**4 - 4*sin(e + f*x)**3 
+ 6*sin(e + f*x)**2 - 4*sin(e + f*x) + 1),x)))/c**4