\(\int \cos ^2(e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{7/2} \, dx\) [31]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 38, antiderivative size = 236 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{7/2} \, dx=-\frac {8 a^4 \cos (e+f x) (c-c \sin (e+f x))^{9/2}}{315 c f \sqrt {a+a \sin (e+f x)}}-\frac {4 a^3 \cos (e+f x) \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{9/2}}{63 c f}-\frac {2 a^2 \cos (e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{9/2}}{21 c f}-\frac {a \cos (e+f x) (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{9/2}}{9 c f}-\frac {\cos (e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{9/2}}{9 c f} \] Output:

-8/315*a^4*cos(f*x+e)*(c-c*sin(f*x+e))^(9/2)/c/f/(a+a*sin(f*x+e))^(1/2)-4/ 
63*a^3*cos(f*x+e)*(a+a*sin(f*x+e))^(1/2)*(c-c*sin(f*x+e))^(9/2)/c/f-2/21*a 
^2*cos(f*x+e)*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(9/2)/c/f-1/9*a*cos( 
f*x+e)*(a+a*sin(f*x+e))^(5/2)*(c-c*sin(f*x+e))^(9/2)/c/f-1/9*cos(f*x+e)*(a 
+a*sin(f*x+e))^(7/2)*(c-c*sin(f*x+e))^(9/2)/c/f
 

Mathematica [A] (verified)

Time = 3.17 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.38 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{7/2} \, dx=\frac {a^3 c^3 \sqrt {a (1+\sin (e+f x))} \sqrt {c-c \sin (e+f x)} \left (315-420 \sin ^2(e+f x)+378 \sin ^4(e+f x)-180 \sin ^6(e+f x)+35 \sin ^8(e+f x)\right ) \tan (e+f x)}{315 f} \] Input:

Integrate[Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(7/2)*(c - c*Sin[e + f*x])^( 
7/2),x]
 

Output:

(a^3*c^3*Sqrt[a*(1 + Sin[e + f*x])]*Sqrt[c - c*Sin[e + f*x]]*(315 - 420*Si 
n[e + f*x]^2 + 378*Sin[e + f*x]^4 - 180*Sin[e + f*x]^6 + 35*Sin[e + f*x]^8 
)*Tan[e + f*x])/(315*f)
 

Rubi [A] (verified)

Time = 1.40 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.03, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {3042, 3320, 3042, 3219, 3042, 3219, 3042, 3219, 3042, 3219, 3042, 3217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^2(e+f x) (a \sin (e+f x)+a)^{7/2} (c-c \sin (e+f x))^{7/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cos (e+f x)^2 (a \sin (e+f x)+a)^{7/2} (c-c \sin (e+f x))^{7/2}dx\)

\(\Big \downarrow \) 3320

\(\displaystyle \frac {\int (\sin (e+f x) a+a)^{9/2} (c-c \sin (e+f x))^{9/2}dx}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int (\sin (e+f x) a+a)^{9/2} (c-c \sin (e+f x))^{9/2}dx}{a c}\)

\(\Big \downarrow \) 3219

\(\displaystyle \frac {\frac {8}{9} a \int (\sin (e+f x) a+a)^{7/2} (c-c \sin (e+f x))^{9/2}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2} (c-c \sin (e+f x))^{9/2}}{9 f}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {8}{9} a \int (\sin (e+f x) a+a)^{7/2} (c-c \sin (e+f x))^{9/2}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2} (c-c \sin (e+f x))^{9/2}}{9 f}}{a c}\)

\(\Big \downarrow \) 3219

\(\displaystyle \frac {\frac {8}{9} a \left (\frac {3}{4} a \int (\sin (e+f x) a+a)^{5/2} (c-c \sin (e+f x))^{9/2}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{9/2}}{8 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2} (c-c \sin (e+f x))^{9/2}}{9 f}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {8}{9} a \left (\frac {3}{4} a \int (\sin (e+f x) a+a)^{5/2} (c-c \sin (e+f x))^{9/2}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{9/2}}{8 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2} (c-c \sin (e+f x))^{9/2}}{9 f}}{a c}\)

\(\Big \downarrow \) 3219

\(\displaystyle \frac {\frac {8}{9} a \left (\frac {3}{4} a \left (\frac {4}{7} a \int (\sin (e+f x) a+a)^{3/2} (c-c \sin (e+f x))^{9/2}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{9/2}}{7 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{9/2}}{8 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2} (c-c \sin (e+f x))^{9/2}}{9 f}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {8}{9} a \left (\frac {3}{4} a \left (\frac {4}{7} a \int (\sin (e+f x) a+a)^{3/2} (c-c \sin (e+f x))^{9/2}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{9/2}}{7 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{9/2}}{8 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2} (c-c \sin (e+f x))^{9/2}}{9 f}}{a c}\)

\(\Big \downarrow \) 3219

\(\displaystyle \frac {\frac {8}{9} a \left (\frac {3}{4} a \left (\frac {4}{7} a \left (\frac {1}{3} a \int \sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{9/2}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{9/2}}{6 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{9/2}}{7 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{9/2}}{8 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2} (c-c \sin (e+f x))^{9/2}}{9 f}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {8}{9} a \left (\frac {3}{4} a \left (\frac {4}{7} a \left (\frac {1}{3} a \int \sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{9/2}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{9/2}}{6 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{9/2}}{7 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{9/2}}{8 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2} (c-c \sin (e+f x))^{9/2}}{9 f}}{a c}\)

\(\Big \downarrow \) 3217

\(\displaystyle \frac {\frac {8}{9} a \left (\frac {3}{4} a \left (\frac {4}{7} a \left (-\frac {a^2 \cos (e+f x) (c-c \sin (e+f x))^{9/2}}{15 f \sqrt {a \sin (e+f x)+a}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{9/2}}{6 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{9/2}}{7 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{9/2}}{8 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2} (c-c \sin (e+f x))^{9/2}}{9 f}}{a c}\)

Input:

Int[Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(7/2)*(c - c*Sin[e + f*x])^(7/2),x 
]
 

Output:

(-1/9*(a*Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2)*(c - c*Sin[e + f*x])^(9/2 
))/f + (8*a*(-1/8*(a*Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e 
+ f*x])^(9/2))/f + (3*a*(-1/7*(a*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2)*( 
c - c*Sin[e + f*x])^(9/2))/f + (4*a*(-1/15*(a^2*Cos[e + f*x]*(c - c*Sin[e 
+ f*x])^(9/2))/(f*Sqrt[a + a*Sin[e + f*x]]) - (a*Cos[e + f*x]*Sqrt[a + a*S 
in[e + f*x]]*(c - c*Sin[e + f*x])^(9/2))/(6*f)))/7))/4))/9)/(a*c)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3217
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f 
_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^ 
n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e, f, n 
}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]
 

rule 3219
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Simp[a*((2*m - 1)/(m + n 
))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; Fre 
eQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I 
GtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m]) &&  !( 
ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])
 

rule 3320
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(a^(p/ 
2)*c^(p/2))   Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(n + 
p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && 
EqQ[a^2 - b^2, 0] && IntegerQ[p/2]
 
Maple [F]

\[\int \cos \left (f x +e \right )^{2} \left (a +a \sin \left (f x +e \right )\right )^{\frac {7}{2}} \left (c -c \sin \left (f x +e \right )\right )^{\frac {7}{2}}d x\]

Input:

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(7/2)*(c-c*sin(f*x+e))^(7/2),x)
 

Output:

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(7/2)*(c-c*sin(f*x+e))^(7/2),x)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.50 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{7/2} \, dx=\frac {{\left (35 \, a^{3} c^{3} \cos \left (f x + e\right )^{8} + 40 \, a^{3} c^{3} \cos \left (f x + e\right )^{6} + 48 \, a^{3} c^{3} \cos \left (f x + e\right )^{4} + 64 \, a^{3} c^{3} \cos \left (f x + e\right )^{2} + 128 \, a^{3} c^{3}\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{315 \, f \cos \left (f x + e\right )} \] Input:

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(7/2)*(c-c*sin(f*x+e))^(7/2),x, al 
gorithm="fricas")
 

Output:

1/315*(35*a^3*c^3*cos(f*x + e)^8 + 40*a^3*c^3*cos(f*x + e)^6 + 48*a^3*c^3* 
cos(f*x + e)^4 + 64*a^3*c^3*cos(f*x + e)^2 + 128*a^3*c^3)*sqrt(a*sin(f*x + 
 e) + a)*sqrt(-c*sin(f*x + e) + c)*sin(f*x + e)/(f*cos(f*x + e))
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{7/2} \, dx=\text {Timed out} \] Input:

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**(7/2)*(c-c*sin(f*x+e))**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{7/2} \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {7}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {7}{2}} \cos \left (f x + e\right )^{2} \,d x } \] Input:

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(7/2)*(c-c*sin(f*x+e))^(7/2),x, al 
gorithm="maxima")
 

Output:

integrate((a*sin(f*x + e) + a)^(7/2)*(-c*sin(f*x + e) + c)^(7/2)*cos(f*x + 
 e)^2, x)
 

Giac [A] (verification not implemented)

Time = 0.40 (sec) , antiderivative size = 252, normalized size of antiderivative = 1.07 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{7/2} \, dx=\frac {256 \, {\left (70 \, a^{3} c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{18} - 315 \, a^{3} c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{16} + 540 \, a^{3} c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{14} - 420 \, a^{3} c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{12} + 126 \, a^{3} c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{10}\right )} \sqrt {a} \sqrt {c}}{315 \, f} \] Input:

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(7/2)*(c-c*sin(f*x+e))^(7/2),x, al 
gorithm="giac")
 

Output:

256/315*(70*a^3*c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 
1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^18 - 315*a^3*c^3*sgn(cos( 
-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*p 
i + 1/2*f*x + 1/2*e)^16 + 540*a^3*c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))* 
sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^14 - 42 
0*a^3*c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 
1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^12 + 126*a^3*c^3*sgn(cos(-1/4*pi + 
1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f* 
x + 1/2*e)^10)*sqrt(a)*sqrt(c)/f
 

Mupad [B] (verification not implemented)

Time = 20.23 (sec) , antiderivative size = 247, normalized size of antiderivative = 1.05 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{7/2} \, dx=\frac {{\mathrm {e}}^{-e\,9{}\mathrm {i}-f\,x\,9{}\mathrm {i}}\,\sqrt {c-c\,\sin \left (e+f\,x\right )}\,\left (\frac {63\,a^3\,c^3\,{\mathrm {e}}^{e\,9{}\mathrm {i}+f\,x\,9{}\mathrm {i}}\,\sin \left (e+f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{64\,f}+\frac {7\,a^3\,c^3\,{\mathrm {e}}^{e\,9{}\mathrm {i}+f\,x\,9{}\mathrm {i}}\,\sin \left (3\,e+3\,f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{32\,f}+\frac {9\,a^3\,c^3\,{\mathrm {e}}^{e\,9{}\mathrm {i}+f\,x\,9{}\mathrm {i}}\,\sin \left (5\,e+5\,f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{160\,f}+\frac {9\,a^3\,c^3\,{\mathrm {e}}^{e\,9{}\mathrm {i}+f\,x\,9{}\mathrm {i}}\,\sin \left (7\,e+7\,f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{896\,f}+\frac {a^3\,c^3\,{\mathrm {e}}^{e\,9{}\mathrm {i}+f\,x\,9{}\mathrm {i}}\,\sin \left (9\,e+9\,f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{1152\,f}\right )}{2\,\cos \left (e+f\,x\right )} \] Input:

int(cos(e + f*x)^2*(a + a*sin(e + f*x))^(7/2)*(c - c*sin(e + f*x))^(7/2),x 
)
 

Output:

(exp(- e*9i - f*x*9i)*(c - c*sin(e + f*x))^(1/2)*((63*a^3*c^3*exp(e*9i + f 
*x*9i)*sin(e + f*x)*(a + a*sin(e + f*x))^(1/2))/(64*f) + (7*a^3*c^3*exp(e* 
9i + f*x*9i)*sin(3*e + 3*f*x)*(a + a*sin(e + f*x))^(1/2))/(32*f) + (9*a^3* 
c^3*exp(e*9i + f*x*9i)*sin(5*e + 5*f*x)*(a + a*sin(e + f*x))^(1/2))/(160*f 
) + (9*a^3*c^3*exp(e*9i + f*x*9i)*sin(7*e + 7*f*x)*(a + a*sin(e + f*x))^(1 
/2))/(896*f) + (a^3*c^3*exp(e*9i + f*x*9i)*sin(9*e + 9*f*x)*(a + a*sin(e + 
 f*x))^(1/2))/(1152*f)))/(2*cos(e + f*x))
 

Reduce [F]

\[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{7/2} \, dx=\sqrt {c}\, \sqrt {a}\, a^{3} c^{3} \left (-\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \cos \left (f x +e \right )^{2} \sin \left (f x +e \right )^{6}d x \right )+3 \left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \cos \left (f x +e \right )^{2} \sin \left (f x +e \right )^{4}d x \right )-3 \left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \cos \left (f x +e \right )^{2} \sin \left (f x +e \right )^{2}d x \right )+\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \cos \left (f x +e \right )^{2}d x \right ) \] Input:

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(7/2)*(c-c*sin(f*x+e))^(7/2),x)
 

Output:

sqrt(c)*sqrt(a)*a**3*c**3*( - int(sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f 
*x) + 1)*cos(e + f*x)**2*sin(e + f*x)**6,x) + 3*int(sqrt(sin(e + f*x) + 1) 
*sqrt( - sin(e + f*x) + 1)*cos(e + f*x)**2*sin(e + f*x)**4,x) - 3*int(sqrt 
(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1)*cos(e + f*x)**2*sin(e + f*x)* 
*2,x) + int(sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1)*cos(e + f*x)* 
*2,x))