\(\int \cos ^6(c+d x) \sin ^4(c+d x) (a+a \sin (c+d x)) \, dx\) [572]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 165 \[ \int \cos ^6(c+d x) \sin ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {3 a x}{256}-\frac {a \cos ^7(c+d x)}{7 d}+\frac {2 a \cos ^9(c+d x)}{9 d}-\frac {a \cos ^{11}(c+d x)}{11 d}+\frac {3 a \cos (c+d x) \sin (c+d x)}{256 d}+\frac {a \cos ^3(c+d x) \sin (c+d x)}{128 d}+\frac {a \cos ^5(c+d x) \sin (c+d x)}{160 d}-\frac {3 a \cos ^7(c+d x) \sin (c+d x)}{80 d}-\frac {a \cos ^7(c+d x) \sin ^3(c+d x)}{10 d} \] Output:

3/256*a*x-1/7*a*cos(d*x+c)^7/d+2/9*a*cos(d*x+c)^9/d-1/11*a*cos(d*x+c)^11/d 
+3/256*a*cos(d*x+c)*sin(d*x+c)/d+1/128*a*cos(d*x+c)^3*sin(d*x+c)/d+1/160*a 
*cos(d*x+c)^5*sin(d*x+c)/d-3/80*a*cos(d*x+c)^7*sin(d*x+c)/d-1/10*a*cos(d*x 
+c)^7*sin(d*x+c)^3/d
 

Mathematica [A] (verified)

Time = 0.59 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.73 \[ \int \cos ^6(c+d x) \sin ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {a (83160 d x-69300 \cos (c+d x)-23100 \cos (3 (c+d x))+6930 \cos (5 (c+d x))+4950 \cos (7 (c+d x))-770 \cos (9 (c+d x))-630 \cos (11 (c+d x))+13860 \sin (2 (c+d x))-27720 \sin (4 (c+d x))-6930 \sin (6 (c+d x))+3465 \sin (8 (c+d x))+1386 \sin (10 (c+d x)))}{7096320 d} \] Input:

Integrate[Cos[c + d*x]^6*Sin[c + d*x]^4*(a + a*Sin[c + d*x]),x]
 

Output:

(a*(83160*d*x - 69300*Cos[c + d*x] - 23100*Cos[3*(c + d*x)] + 6930*Cos[5*( 
c + d*x)] + 4950*Cos[7*(c + d*x)] - 770*Cos[9*(c + d*x)] - 630*Cos[11*(c + 
 d*x)] + 13860*Sin[2*(c + d*x)] - 27720*Sin[4*(c + d*x)] - 6930*Sin[6*(c + 
 d*x)] + 3465*Sin[8*(c + d*x)] + 1386*Sin[10*(c + d*x)]))/(7096320*d)
 

Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.07, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.593, Rules used = {3042, 3317, 3042, 3045, 244, 2009, 3048, 3042, 3048, 3042, 3115, 3042, 3115, 3042, 3115, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sin ^4(c+d x) \cos ^6(c+d x) (a \sin (c+d x)+a) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin (c+d x)^4 \cos (c+d x)^6 (a \sin (c+d x)+a)dx\)

\(\Big \downarrow \) 3317

\(\displaystyle a \int \cos ^6(c+d x) \sin ^5(c+d x)dx+a \int \cos ^6(c+d x) \sin ^4(c+d x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \int \cos (c+d x)^6 \sin (c+d x)^4dx+a \int \cos (c+d x)^6 \sin (c+d x)^5dx\)

\(\Big \downarrow \) 3045

\(\displaystyle a \int \cos (c+d x)^6 \sin (c+d x)^4dx-\frac {a \int \cos ^6(c+d x) \left (1-\cos ^2(c+d x)\right )^2d\cos (c+d x)}{d}\)

\(\Big \downarrow \) 244

\(\displaystyle a \int \cos (c+d x)^6 \sin (c+d x)^4dx-\frac {a \int \left (\cos ^{10}(c+d x)-2 \cos ^8(c+d x)+\cos ^6(c+d x)\right )d\cos (c+d x)}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle a \int \cos (c+d x)^6 \sin (c+d x)^4dx-\frac {a \left (\frac {1}{11} \cos ^{11}(c+d x)-\frac {2}{9} \cos ^9(c+d x)+\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

\(\Big \downarrow \) 3048

\(\displaystyle a \left (\frac {3}{10} \int \cos ^6(c+d x) \sin ^2(c+d x)dx-\frac {\sin ^3(c+d x) \cos ^7(c+d x)}{10 d}\right )-\frac {a \left (\frac {1}{11} \cos ^{11}(c+d x)-\frac {2}{9} \cos ^9(c+d x)+\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {3}{10} \int \cos (c+d x)^6 \sin (c+d x)^2dx-\frac {\sin ^3(c+d x) \cos ^7(c+d x)}{10 d}\right )-\frac {a \left (\frac {1}{11} \cos ^{11}(c+d x)-\frac {2}{9} \cos ^9(c+d x)+\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

\(\Big \downarrow \) 3048

\(\displaystyle a \left (\frac {3}{10} \left (\frac {1}{8} \int \cos ^6(c+d x)dx-\frac {\sin (c+d x) \cos ^7(c+d x)}{8 d}\right )-\frac {\sin ^3(c+d x) \cos ^7(c+d x)}{10 d}\right )-\frac {a \left (\frac {1}{11} \cos ^{11}(c+d x)-\frac {2}{9} \cos ^9(c+d x)+\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {3}{10} \left (\frac {1}{8} \int \sin \left (c+d x+\frac {\pi }{2}\right )^6dx-\frac {\sin (c+d x) \cos ^7(c+d x)}{8 d}\right )-\frac {\sin ^3(c+d x) \cos ^7(c+d x)}{10 d}\right )-\frac {a \left (\frac {1}{11} \cos ^{11}(c+d x)-\frac {2}{9} \cos ^9(c+d x)+\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

\(\Big \downarrow \) 3115

\(\displaystyle a \left (\frac {3}{10} \left (\frac {1}{8} \left (\frac {5}{6} \int \cos ^4(c+d x)dx+\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}\right )-\frac {\sin (c+d x) \cos ^7(c+d x)}{8 d}\right )-\frac {\sin ^3(c+d x) \cos ^7(c+d x)}{10 d}\right )-\frac {a \left (\frac {1}{11} \cos ^{11}(c+d x)-\frac {2}{9} \cos ^9(c+d x)+\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {3}{10} \left (\frac {1}{8} \left (\frac {5}{6} \int \sin \left (c+d x+\frac {\pi }{2}\right )^4dx+\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}\right )-\frac {\sin (c+d x) \cos ^7(c+d x)}{8 d}\right )-\frac {\sin ^3(c+d x) \cos ^7(c+d x)}{10 d}\right )-\frac {a \left (\frac {1}{11} \cos ^{11}(c+d x)-\frac {2}{9} \cos ^9(c+d x)+\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

\(\Big \downarrow \) 3115

\(\displaystyle a \left (\frac {3}{10} \left (\frac {1}{8} \left (\frac {5}{6} \left (\frac {3}{4} \int \cos ^2(c+d x)dx+\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )+\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}\right )-\frac {\sin (c+d x) \cos ^7(c+d x)}{8 d}\right )-\frac {\sin ^3(c+d x) \cos ^7(c+d x)}{10 d}\right )-\frac {a \left (\frac {1}{11} \cos ^{11}(c+d x)-\frac {2}{9} \cos ^9(c+d x)+\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle a \left (\frac {3}{10} \left (\frac {1}{8} \left (\frac {5}{6} \left (\frac {3}{4} \int \sin \left (c+d x+\frac {\pi }{2}\right )^2dx+\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )+\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}\right )-\frac {\sin (c+d x) \cos ^7(c+d x)}{8 d}\right )-\frac {\sin ^3(c+d x) \cos ^7(c+d x)}{10 d}\right )-\frac {a \left (\frac {1}{11} \cos ^{11}(c+d x)-\frac {2}{9} \cos ^9(c+d x)+\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

\(\Big \downarrow \) 3115

\(\displaystyle a \left (\frac {3}{10} \left (\frac {1}{8} \left (\frac {5}{6} \left (\frac {3}{4} \left (\frac {\int 1dx}{2}+\frac {\sin (c+d x) \cos (c+d x)}{2 d}\right )+\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}\right )+\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}\right )-\frac {\sin (c+d x) \cos ^7(c+d x)}{8 d}\right )-\frac {\sin ^3(c+d x) \cos ^7(c+d x)}{10 d}\right )-\frac {a \left (\frac {1}{11} \cos ^{11}(c+d x)-\frac {2}{9} \cos ^9(c+d x)+\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

\(\Big \downarrow \) 24

\(\displaystyle a \left (\frac {3}{10} \left (\frac {1}{8} \left (\frac {\sin (c+d x) \cos ^5(c+d x)}{6 d}+\frac {5}{6} \left (\frac {\sin (c+d x) \cos ^3(c+d x)}{4 d}+\frac {3}{4} \left (\frac {\sin (c+d x) \cos (c+d x)}{2 d}+\frac {x}{2}\right )\right )\right )-\frac {\sin (c+d x) \cos ^7(c+d x)}{8 d}\right )-\frac {\sin ^3(c+d x) \cos ^7(c+d x)}{10 d}\right )-\frac {a \left (\frac {1}{11} \cos ^{11}(c+d x)-\frac {2}{9} \cos ^9(c+d x)+\frac {1}{7} \cos ^7(c+d x)\right )}{d}\)

Input:

Int[Cos[c + d*x]^6*Sin[c + d*x]^4*(a + a*Sin[c + d*x]),x]
 

Output:

-((a*(Cos[c + d*x]^7/7 - (2*Cos[c + d*x]^9)/9 + Cos[c + d*x]^11/11))/d) + 
a*(-1/10*(Cos[c + d*x]^7*Sin[c + d*x]^3)/d + (3*(-1/8*(Cos[c + d*x]^7*Sin[ 
c + d*x])/d + ((Cos[c + d*x]^5*Sin[c + d*x])/(6*d) + (5*((Cos[c + d*x]^3*S 
in[c + d*x])/(4*d) + (3*(x/2 + (Cos[c + d*x]*Sin[c + d*x])/(2*d)))/4))/6)/ 
8))/10)
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 244
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Expand 
Integrand[(c*x)^m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && IGtQ[p 
, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3045
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_ 
Symbol] :> Simp[-(a*f)^(-1)   Subst[Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], 
x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] && 
 !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])
 

rule 3048
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_), x_Symbol] :> Simp[(-a)*(b*Cos[e + f*x])^(n + 1)*((a*Sin[e + f*x])^(m - 
1)/(b*f*(m + n))), x] + Simp[a^2*((m - 1)/(m + n))   Int[(b*Cos[e + f*x])^n 
*(a*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] 
 && NeQ[m + n, 0] && IntegersQ[2*m, 2*n]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3317
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[a   Int[(g*Co 
s[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Simp[b/d   Int[(g*Cos[e + f*x])^ 
p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]
 
Maple [A] (verified)

Time = 0.29 (sec) , antiderivative size = 134, normalized size of antiderivative = 0.81

\[\frac {a \left (-\frac {\sin \left (d x +c \right )^{4} \cos \left (d x +c \right )^{7}}{11}-\frac {4 \cos \left (d x +c \right )^{7} \sin \left (d x +c \right )^{2}}{99}-\frac {8 \cos \left (d x +c \right )^{7}}{693}\right )+a \left (-\frac {\sin \left (d x +c \right )^{3} \cos \left (d x +c \right )^{7}}{10}-\frac {3 \cos \left (d x +c \right )^{7} \sin \left (d x +c \right )}{80}+\frac {\left (\cos \left (d x +c \right )^{5}+\frac {5 \cos \left (d x +c \right )^{3}}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{160}+\frac {3 d x}{256}+\frac {3 c}{256}\right )}{d}\]

Input:

int(cos(d*x+c)^6*sin(d*x+c)^4*(a+a*sin(d*x+c)),x)
 

Output:

1/d*(a*(-1/11*sin(d*x+c)^4*cos(d*x+c)^7-4/99*cos(d*x+c)^7*sin(d*x+c)^2-8/6 
93*cos(d*x+c)^7)+a*(-1/10*sin(d*x+c)^3*cos(d*x+c)^7-3/80*cos(d*x+c)^7*sin( 
d*x+c)+1/160*(cos(d*x+c)^5+5/4*cos(d*x+c)^3+15/8*cos(d*x+c))*sin(d*x+c)+3/ 
256*d*x+3/256*c))
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.64 \[ \int \cos ^6(c+d x) \sin ^4(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {80640 \, a \cos \left (d x + c\right )^{11} - 197120 \, a \cos \left (d x + c\right )^{9} + 126720 \, a \cos \left (d x + c\right )^{7} - 10395 \, a d x - 693 \, {\left (128 \, a \cos \left (d x + c\right )^{9} - 176 \, a \cos \left (d x + c\right )^{7} + 8 \, a \cos \left (d x + c\right )^{5} + 10 \, a \cos \left (d x + c\right )^{3} + 15 \, a \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{887040 \, d} \] Input:

integrate(cos(d*x+c)^6*sin(d*x+c)^4*(a+a*sin(d*x+c)),x, algorithm="fricas" 
)
 

Output:

-1/887040*(80640*a*cos(d*x + c)^11 - 197120*a*cos(d*x + c)^9 + 126720*a*co 
s(d*x + c)^7 - 10395*a*d*x - 693*(128*a*cos(d*x + c)^9 - 176*a*cos(d*x + c 
)^7 + 8*a*cos(d*x + c)^5 + 10*a*cos(d*x + c)^3 + 15*a*cos(d*x + c))*sin(d* 
x + c))/d
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 318 vs. \(2 (153) = 306\).

Time = 1.86 (sec) , antiderivative size = 318, normalized size of antiderivative = 1.93 \[ \int \cos ^6(c+d x) \sin ^4(c+d x) (a+a \sin (c+d x)) \, dx=\begin {cases} \frac {3 a x \sin ^{10}{\left (c + d x \right )}}{256} + \frac {15 a x \sin ^{8}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{256} + \frac {15 a x \sin ^{6}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{128} + \frac {15 a x \sin ^{4}{\left (c + d x \right )} \cos ^{6}{\left (c + d x \right )}}{128} + \frac {15 a x \sin ^{2}{\left (c + d x \right )} \cos ^{8}{\left (c + d x \right )}}{256} + \frac {3 a x \cos ^{10}{\left (c + d x \right )}}{256} + \frac {3 a \sin ^{9}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{256 d} + \frac {7 a \sin ^{7}{\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{128 d} + \frac {a \sin ^{5}{\left (c + d x \right )} \cos ^{5}{\left (c + d x \right )}}{10 d} - \frac {a \sin ^{4}{\left (c + d x \right )} \cos ^{7}{\left (c + d x \right )}}{7 d} - \frac {7 a \sin ^{3}{\left (c + d x \right )} \cos ^{7}{\left (c + d x \right )}}{128 d} - \frac {4 a \sin ^{2}{\left (c + d x \right )} \cos ^{9}{\left (c + d x \right )}}{63 d} - \frac {3 a \sin {\left (c + d x \right )} \cos ^{9}{\left (c + d x \right )}}{256 d} - \frac {8 a \cos ^{11}{\left (c + d x \right )}}{693 d} & \text {for}\: d \neq 0 \\x \left (a \sin {\left (c \right )} + a\right ) \sin ^{4}{\left (c \right )} \cos ^{6}{\left (c \right )} & \text {otherwise} \end {cases} \] Input:

integrate(cos(d*x+c)**6*sin(d*x+c)**4*(a+a*sin(d*x+c)),x)
 

Output:

Piecewise((3*a*x*sin(c + d*x)**10/256 + 15*a*x*sin(c + d*x)**8*cos(c + d*x 
)**2/256 + 15*a*x*sin(c + d*x)**6*cos(c + d*x)**4/128 + 15*a*x*sin(c + d*x 
)**4*cos(c + d*x)**6/128 + 15*a*x*sin(c + d*x)**2*cos(c + d*x)**8/256 + 3* 
a*x*cos(c + d*x)**10/256 + 3*a*sin(c + d*x)**9*cos(c + d*x)/(256*d) + 7*a* 
sin(c + d*x)**7*cos(c + d*x)**3/(128*d) + a*sin(c + d*x)**5*cos(c + d*x)** 
5/(10*d) - a*sin(c + d*x)**4*cos(c + d*x)**7/(7*d) - 7*a*sin(c + d*x)**3*c 
os(c + d*x)**7/(128*d) - 4*a*sin(c + d*x)**2*cos(c + d*x)**9/(63*d) - 3*a* 
sin(c + d*x)*cos(c + d*x)**9/(256*d) - 8*a*cos(c + d*x)**11/(693*d), Ne(d, 
 0)), (x*(a*sin(c) + a)*sin(c)**4*cos(c)**6, True))
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.52 \[ \int \cos ^6(c+d x) \sin ^4(c+d x) (a+a \sin (c+d x)) \, dx=-\frac {10240 \, {\left (63 \, \cos \left (d x + c\right )^{11} - 154 \, \cos \left (d x + c\right )^{9} + 99 \, \cos \left (d x + c\right )^{7}\right )} a - 693 \, {\left (32 \, \sin \left (2 \, d x + 2 \, c\right )^{5} + 120 \, d x + 120 \, c + 5 \, \sin \left (8 \, d x + 8 \, c\right ) - 40 \, \sin \left (4 \, d x + 4 \, c\right )\right )} a}{7096320 \, d} \] Input:

integrate(cos(d*x+c)^6*sin(d*x+c)^4*(a+a*sin(d*x+c)),x, algorithm="maxima" 
)
 

Output:

-1/7096320*(10240*(63*cos(d*x + c)^11 - 154*cos(d*x + c)^9 + 99*cos(d*x + 
c)^7)*a - 693*(32*sin(2*d*x + 2*c)^5 + 120*d*x + 120*c + 5*sin(8*d*x + 8*c 
) - 40*sin(4*d*x + 4*c))*a)/d
 

Giac [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.01 \[ \int \cos ^6(c+d x) \sin ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {3}{256} \, a x - \frac {a \cos \left (11 \, d x + 11 \, c\right )}{11264 \, d} - \frac {a \cos \left (9 \, d x + 9 \, c\right )}{9216 \, d} + \frac {5 \, a \cos \left (7 \, d x + 7 \, c\right )}{7168 \, d} + \frac {a \cos \left (5 \, d x + 5 \, c\right )}{1024 \, d} - \frac {5 \, a \cos \left (3 \, d x + 3 \, c\right )}{1536 \, d} - \frac {5 \, a \cos \left (d x + c\right )}{512 \, d} + \frac {a \sin \left (10 \, d x + 10 \, c\right )}{5120 \, d} + \frac {a \sin \left (8 \, d x + 8 \, c\right )}{2048 \, d} - \frac {a \sin \left (6 \, d x + 6 \, c\right )}{1024 \, d} - \frac {a \sin \left (4 \, d x + 4 \, c\right )}{256 \, d} + \frac {a \sin \left (2 \, d x + 2 \, c\right )}{512 \, d} \] Input:

integrate(cos(d*x+c)^6*sin(d*x+c)^4*(a+a*sin(d*x+c)),x, algorithm="giac")
 

Output:

3/256*a*x - 1/11264*a*cos(11*d*x + 11*c)/d - 1/9216*a*cos(9*d*x + 9*c)/d + 
 5/7168*a*cos(7*d*x + 7*c)/d + 1/1024*a*cos(5*d*x + 5*c)/d - 5/1536*a*cos( 
3*d*x + 3*c)/d - 5/512*a*cos(d*x + c)/d + 1/5120*a*sin(10*d*x + 10*c)/d + 
1/2048*a*sin(8*d*x + 8*c)/d - 1/1024*a*sin(6*d*x + 6*c)/d - 1/256*a*sin(4* 
d*x + 4*c)/d + 1/512*a*sin(2*d*x + 2*c)/d
 

Mupad [B] (verification not implemented)

Time = 38.28 (sec) , antiderivative size = 447, normalized size of antiderivative = 2.71 \[ \int \cos ^6(c+d x) \sin ^4(c+d x) (a+a \sin (c+d x)) \, dx =\text {Too large to display} \] Input:

int(cos(c + d*x)^6*sin(c + d*x)^4*(a + a*sin(c + d*x)),x)
                                                                                    
                                                                                    
 

Output:

(3*a*x)/256 + ((a*(10395*c + 10395*d*x - 20480))/887040 - (3*a*tan(c/2 + ( 
d*x)/2))/128 - (3*a*(c + d*x))/256 + tan(c/2 + (d*x)/2)^2*((a*(114345*c + 
114345*d*x - 225280))/887040 - (33*a*(c + d*x))/256) + tan(c/2 + (d*x)/2)^ 
4*((a*(571725*c + 571725*d*x - 1126400))/887040 - (165*a*(c + d*x))/256) + 
 tan(c/2 + (d*x)/2)^6*((a*(1715175*c + 1715175*d*x + 6082560))/887040 - (4 
95*a*(c + d*x))/256) + tan(c/2 + (d*x)/2)^16*((a*(1715175*c + 1715175*d*x 
- 9461760))/887040 - (495*a*(c + d*x))/256) + tan(c/2 + (d*x)/2)^14*((a*(3 
430350*c + 3430350*d*x + 23654400))/887040 - (495*a*(c + d*x))/128) + tan( 
c/2 + (d*x)/2)^8*((a*(3430350*c + 3430350*d*x - 30412800))/887040 - (495*a 
*(c + d*x))/128) + tan(c/2 + (d*x)/2)^10*((a*(4802490*c + 4802490*d*x + 42 
577920))/887040 - (693*a*(c + d*x))/128) + tan(c/2 + (d*x)/2)^12*((a*(4802 
490*c + 4802490*d*x - 52039680))/887040 - (693*a*(c + d*x))/128) - (a*tan( 
c/2 + (d*x)/2)^3)/4 + (3323*a*tan(c/2 + (d*x)/2)^5)/640 - (54*a*tan(c/2 + 
(d*x)/2)^7)/5 + (841*a*tan(c/2 + (d*x)/2)^9)/64 - (841*a*tan(c/2 + (d*x)/2 
)^13)/64 + (54*a*tan(c/2 + (d*x)/2)^15)/5 - (3323*a*tan(c/2 + (d*x)/2)^17) 
/640 + (a*tan(c/2 + (d*x)/2)^19)/4 + (3*a*tan(c/2 + (d*x)/2)^21)/128)/(d*( 
tan(c/2 + (d*x)/2)^2 + 1)^11)
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.08 \[ \int \cos ^6(c+d x) \sin ^4(c+d x) (a+a \sin (c+d x)) \, dx=\frac {a \left (80640 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{10}+88704 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{9}-206080 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{8}-232848 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{7}+144640 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{6}+171864 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{5}-3840 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{4}-6930 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3}-5120 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2}-10395 \cos \left (d x +c \right ) \sin \left (d x +c \right )-10240 \cos \left (d x +c \right )+10395 d x +10240\right )}{887040 d} \] Input:

int(cos(d*x+c)^6*sin(d*x+c)^4*(a+a*sin(d*x+c)),x)
 

Output:

(a*(80640*cos(c + d*x)*sin(c + d*x)**10 + 88704*cos(c + d*x)*sin(c + d*x)* 
*9 - 206080*cos(c + d*x)*sin(c + d*x)**8 - 232848*cos(c + d*x)*sin(c + d*x 
)**7 + 144640*cos(c + d*x)*sin(c + d*x)**6 + 171864*cos(c + d*x)*sin(c + d 
*x)**5 - 3840*cos(c + d*x)*sin(c + d*x)**4 - 6930*cos(c + d*x)*sin(c + d*x 
)**3 - 5120*cos(c + d*x)*sin(c + d*x)**2 - 10395*cos(c + d*x)*sin(c + d*x) 
 - 10240*cos(c + d*x) + 10395*d*x + 10240))/(887040*d)