\(\int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x))^4 \, dx\) [623]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 178 \[ \int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x))^4 \, dx=-\frac {135 a^4 x}{16}+\frac {6 a^4 \text {arctanh}(\cos (c+d x))}{d}-\frac {4 a^4 \cos (c+d x)}{d}+\frac {4 a^4 \cos ^5(c+d x)}{5 d}-\frac {4 a^4 \cot (c+d x)}{d}-\frac {a^4 \cot ^3(c+d x)}{3 d}-\frac {2 a^4 \cot (c+d x) \csc (c+d x)}{d}-\frac {89 a^4 \cos (c+d x) \sin (c+d x)}{16 d}+\frac {23 a^4 \cos (c+d x) \sin ^3(c+d x)}{24 d}+\frac {a^4 \cos (c+d x) \sin ^5(c+d x)}{6 d} \] Output:

-135/16*a^4*x+6*a^4*arctanh(cos(d*x+c))/d-4*a^4*cos(d*x+c)/d+4/5*a^4*cos(d 
*x+c)^5/d-4*a^4*cot(d*x+c)/d-1/3*a^4*cot(d*x+c)^3/d-2*a^4*cot(d*x+c)*csc(d 
*x+c)/d-89/16*a^4*cos(d*x+c)*sin(d*x+c)/d+23/24*a^4*cos(d*x+c)*sin(d*x+c)^ 
3/d+1/6*a^4*cos(d*x+c)*sin(d*x+c)^5/d
 

Mathematica [A] (verified)

Time = 7.93 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.29 \[ \int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x))^4 \, dx=\frac {a^4 (1+\sin (c+d x))^4 \left (-8100 (c+d x)-3360 \cos (c+d x)+240 \cos (3 (c+d x))+48 \cos (5 (c+d x))-1760 \cot \left (\frac {1}{2} (c+d x)\right )-480 \csc ^2\left (\frac {1}{2} (c+d x)\right )+5760 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-5760 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+480 \sec ^2\left (\frac {1}{2} (c+d x)\right )+320 \csc ^3(c+d x) \sin ^4\left (\frac {1}{2} (c+d x)\right )-20 \csc ^4\left (\frac {1}{2} (c+d x)\right ) \sin (c+d x)-2415 \sin (2 (c+d x))-135 \sin (4 (c+d x))+5 \sin (6 (c+d x))+1760 \tan \left (\frac {1}{2} (c+d x)\right )\right )}{960 d \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^8} \] Input:

Integrate[Cos[c + d*x]^2*Cot[c + d*x]^4*(a + a*Sin[c + d*x])^4,x]
 

Output:

(a^4*(1 + Sin[c + d*x])^4*(-8100*(c + d*x) - 3360*Cos[c + d*x] + 240*Cos[3 
*(c + d*x)] + 48*Cos[5*(c + d*x)] - 1760*Cot[(c + d*x)/2] - 480*Csc[(c + d 
*x)/2]^2 + 5760*Log[Cos[(c + d*x)/2]] - 5760*Log[Sin[(c + d*x)/2]] + 480*S 
ec[(c + d*x)/2]^2 + 320*Csc[c + d*x]^3*Sin[(c + d*x)/2]^4 - 20*Csc[(c + d* 
x)/2]^4*Sin[c + d*x] - 2415*Sin[2*(c + d*x)] - 135*Sin[4*(c + d*x)] + 5*Si 
n[6*(c + d*x)] + 1760*Tan[(c + d*x)/2]))/(960*d*(Cos[(c + d*x)/2] + Sin[(c 
 + d*x)/2])^8)
 

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.02, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {3042, 3351, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^2(c+d x) \cot ^4(c+d x) (a \sin (c+d x)+a)^4 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^6 (a \sin (c+d x)+a)^4}{\sin (c+d x)^4}dx\)

\(\Big \downarrow \) 3351

\(\displaystyle \frac {\int \left (-\sin ^6(c+d x) a^{10}-4 \sin ^5(c+d x) a^{10}+\csc ^4(c+d x) a^{10}-3 \sin ^4(c+d x) a^{10}+4 \csc ^3(c+d x) a^{10}+8 \sin ^3(c+d x) a^{10}+3 \csc ^2(c+d x) a^{10}+14 \sin ^2(c+d x) a^{10}-8 \csc (c+d x) a^{10}-14 a^{10}\right )dx}{a^6}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {6 a^{10} \text {arctanh}(\cos (c+d x))}{d}+\frac {4 a^{10} \cos ^5(c+d x)}{5 d}-\frac {4 a^{10} \cos (c+d x)}{d}-\frac {a^{10} \cot ^3(c+d x)}{3 d}-\frac {4 a^{10} \cot (c+d x)}{d}+\frac {a^{10} \sin ^5(c+d x) \cos (c+d x)}{6 d}+\frac {23 a^{10} \sin ^3(c+d x) \cos (c+d x)}{24 d}-\frac {89 a^{10} \sin (c+d x) \cos (c+d x)}{16 d}-\frac {2 a^{10} \cot (c+d x) \csc (c+d x)}{d}-\frac {135 a^{10} x}{16}}{a^6}\)

Input:

Int[Cos[c + d*x]^2*Cot[c + d*x]^4*(a + a*Sin[c + d*x])^4,x]
 

Output:

((-135*a^10*x)/16 + (6*a^10*ArcTanh[Cos[c + d*x]])/d - (4*a^10*Cos[c + d*x 
])/d + (4*a^10*Cos[c + d*x]^5)/(5*d) - (4*a^10*Cot[c + d*x])/d - (a^10*Cot 
[c + d*x]^3)/(3*d) - (2*a^10*Cot[c + d*x]*Csc[c + d*x])/d - (89*a^10*Cos[c 
 + d*x]*Sin[c + d*x])/(16*d) + (23*a^10*Cos[c + d*x]*Sin[c + d*x]^3)/(24*d 
) + (a^10*Cos[c + d*x]*Sin[c + d*x]^5)/(6*d))/a^6
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3351
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) 
 + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[1/a^p   Int[Expan 
dTrig[(d*sin[e + f*x])^n*(a - b*sin[e + f*x])^(p/2)*(a + b*sin[e + f*x])^(m 
 + p/2), x], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && In 
tegersQ[m, n, p/2] && ((GtQ[m, 0] && GtQ[p, 0] && LtQ[-m - p, n, -1]) || (G 
tQ[m, 2] && LtQ[p, 0] && GtQ[m + p/2, 0]))
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 21.09 (sec) , antiderivative size = 292, normalized size of antiderivative = 1.64

method result size
risch \(-\frac {135 a^{4} x}{16}+\frac {161 i a^{4} {\mathrm e}^{2 i \left (d x +c \right )}}{128 d}+\frac {a^{4} {\mathrm e}^{5 i \left (d x +c \right )}}{40 d}+\frac {9 i a^{4} {\mathrm e}^{4 i \left (d x +c \right )}}{128 d}-\frac {7 a^{4} {\mathrm e}^{i \left (d x +c \right )}}{4 d}-\frac {7 a^{4} {\mathrm e}^{-i \left (d x +c \right )}}{4 d}-\frac {161 i a^{4} {\mathrm e}^{-2 i \left (d x +c \right )}}{128 d}+\frac {a^{4} {\mathrm e}^{-5 i \left (d x +c \right )}}{40 d}-\frac {9 i a^{4} {\mathrm e}^{-4 i \left (d x +c \right )}}{128 d}+\frac {2 a^{4} \left (-9 i {\mathrm e}^{4 i \left (d x +c \right )}+6 \,{\mathrm e}^{5 i \left (d x +c \right )}+24 i {\mathrm e}^{2 i \left (d x +c \right )}-11 i-6 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{3}}-\frac {6 a^{4} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d}+\frac {6 a^{4} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d}+\frac {a^{4} \sin \left (6 d x +6 c \right )}{192 d}+\frac {a^{4} \cos \left (3 d x +3 c \right )}{4 d}\) \(292\)
derivativedivides \(\frac {a^{4} \left (\frac {\left (\cos \left (d x +c \right )^{5}+\frac {5 \cos \left (d x +c \right )^{3}}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )+4 a^{4} \left (\frac {\cos \left (d x +c \right )^{5}}{5}+\frac {\cos \left (d x +c \right )^{3}}{3}+\cos \left (d x +c \right )+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )+6 a^{4} \left (-\frac {\cos \left (d x +c \right )^{7}}{\sin \left (d x +c \right )}-\left (\cos \left (d x +c \right )^{5}+\frac {5 \cos \left (d x +c \right )^{3}}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )-\frac {15 d x}{8}-\frac {15 c}{8}\right )+4 a^{4} \left (-\frac {\cos \left (d x +c \right )^{7}}{2 \sin \left (d x +c \right )^{2}}-\frac {\cos \left (d x +c \right )^{5}}{2}-\frac {5 \cos \left (d x +c \right )^{3}}{6}-\frac {5 \cos \left (d x +c \right )}{2}-\frac {5 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2}\right )+a^{4} \left (-\frac {\cos \left (d x +c \right )^{7}}{3 \sin \left (d x +c \right )^{3}}+\frac {4 \cos \left (d x +c \right )^{7}}{3 \sin \left (d x +c \right )}+\frac {4 \left (\cos \left (d x +c \right )^{5}+\frac {5 \cos \left (d x +c \right )^{3}}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{3}+\frac {5 d x}{2}+\frac {5 c}{2}\right )}{d}\) \(320\)
default \(\frac {a^{4} \left (\frac {\left (\cos \left (d x +c \right )^{5}+\frac {5 \cos \left (d x +c \right )^{3}}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )+4 a^{4} \left (\frac {\cos \left (d x +c \right )^{5}}{5}+\frac {\cos \left (d x +c \right )^{3}}{3}+\cos \left (d x +c \right )+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )+6 a^{4} \left (-\frac {\cos \left (d x +c \right )^{7}}{\sin \left (d x +c \right )}-\left (\cos \left (d x +c \right )^{5}+\frac {5 \cos \left (d x +c \right )^{3}}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )-\frac {15 d x}{8}-\frac {15 c}{8}\right )+4 a^{4} \left (-\frac {\cos \left (d x +c \right )^{7}}{2 \sin \left (d x +c \right )^{2}}-\frac {\cos \left (d x +c \right )^{5}}{2}-\frac {5 \cos \left (d x +c \right )^{3}}{6}-\frac {5 \cos \left (d x +c \right )}{2}-\frac {5 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2}\right )+a^{4} \left (-\frac {\cos \left (d x +c \right )^{7}}{3 \sin \left (d x +c \right )^{3}}+\frac {4 \cos \left (d x +c \right )^{7}}{3 \sin \left (d x +c \right )}+\frac {4 \left (\cos \left (d x +c \right )^{5}+\frac {5 \cos \left (d x +c \right )^{3}}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{3}+\frac {5 d x}{2}+\frac {5 c}{2}\right )}{d}\) \(320\)

Input:

int(cos(d*x+c)^2*cot(d*x+c)^4*(a+a*sin(d*x+c))^4,x,method=_RETURNVERBOSE)
 

Output:

-135/16*a^4*x+161/128*I/d*a^4*exp(2*I*(d*x+c))+1/40*a^4/d*exp(5*I*(d*x+c)) 
+9/128*I/d*a^4*exp(4*I*(d*x+c))-7/4*a^4/d*exp(I*(d*x+c))-7/4*a^4/d*exp(-I* 
(d*x+c))-161/128*I/d*a^4*exp(-2*I*(d*x+c))+1/40*a^4/d*exp(-5*I*(d*x+c))-9/ 
128*I/d*a^4*exp(-4*I*(d*x+c))+2/3*a^4*(-9*I*exp(4*I*(d*x+c))+6*exp(5*I*(d* 
x+c))+24*I*exp(2*I*(d*x+c))-11*I-6*exp(I*(d*x+c)))/d/(exp(2*I*(d*x+c))-1)^ 
3-6*a^4/d*ln(exp(I*(d*x+c))-1)+6*a^4/d*ln(exp(I*(d*x+c))+1)+1/192/d*a^4*si 
n(6*d*x+6*c)+1/4/d*a^4*cos(3*d*x+3*c)
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.38 \[ \int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x))^4 \, dx=-\frac {40 \, a^{4} \cos \left (d x + c\right )^{9} - 390 \, a^{4} \cos \left (d x + c\right )^{7} - 405 \, a^{4} \cos \left (d x + c\right )^{5} + 2700 \, a^{4} \cos \left (d x + c\right )^{3} - 2025 \, a^{4} \cos \left (d x + c\right ) - 720 \, {\left (a^{4} \cos \left (d x + c\right )^{2} - a^{4}\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) + 720 \, {\left (a^{4} \cos \left (d x + c\right )^{2} - a^{4}\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - 3 \, {\left (64 \, a^{4} \cos \left (d x + c\right )^{7} - 64 \, a^{4} \cos \left (d x + c\right )^{5} - 675 \, a^{4} d x \cos \left (d x + c\right )^{2} - 320 \, a^{4} \cos \left (d x + c\right )^{3} + 675 \, a^{4} d x + 480 \, a^{4} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{240 \, {\left (d \cos \left (d x + c\right )^{2} - d\right )} \sin \left (d x + c\right )} \] Input:

integrate(cos(d*x+c)^2*cot(d*x+c)^4*(a+a*sin(d*x+c))^4,x, algorithm="frica 
s")
 

Output:

-1/240*(40*a^4*cos(d*x + c)^9 - 390*a^4*cos(d*x + c)^7 - 405*a^4*cos(d*x + 
 c)^5 + 2700*a^4*cos(d*x + c)^3 - 2025*a^4*cos(d*x + c) - 720*(a^4*cos(d*x 
 + c)^2 - a^4)*log(1/2*cos(d*x + c) + 1/2)*sin(d*x + c) + 720*(a^4*cos(d*x 
 + c)^2 - a^4)*log(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 3*(64*a^4*cos(d 
*x + c)^7 - 64*a^4*cos(d*x + c)^5 - 675*a^4*d*x*cos(d*x + c)^2 - 320*a^4*c 
os(d*x + c)^3 + 675*a^4*d*x + 480*a^4*cos(d*x + c))*sin(d*x + c))/((d*cos( 
d*x + c)^2 - d)*sin(d*x + c))
 

Sympy [F]

\[ \int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x))^4 \, dx=a^{4} \left (\int \cos ^{2}{\left (c + d x \right )} \cot ^{4}{\left (c + d x \right )}\, dx + \int 4 \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )} \cot ^{4}{\left (c + d x \right )}\, dx + \int 6 \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )} \cot ^{4}{\left (c + d x \right )}\, dx + \int 4 \sin ^{3}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )} \cot ^{4}{\left (c + d x \right )}\, dx + \int \sin ^{4}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )} \cot ^{4}{\left (c + d x \right )}\, dx\right ) \] Input:

integrate(cos(d*x+c)**2*cot(d*x+c)**4*(a+a*sin(d*x+c))**4,x)
 

Output:

a**4*(Integral(cos(c + d*x)**2*cot(c + d*x)**4, x) + Integral(4*sin(c + d* 
x)*cos(c + d*x)**2*cot(c + d*x)**4, x) + Integral(6*sin(c + d*x)**2*cos(c 
+ d*x)**2*cot(c + d*x)**4, x) + Integral(4*sin(c + d*x)**3*cos(c + d*x)**2 
*cot(c + d*x)**4, x) + Integral(sin(c + d*x)**4*cos(c + d*x)**2*cot(c + d* 
x)**4, x))
 

Maxima [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 294, normalized size of antiderivative = 1.65 \[ \int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x))^4 \, dx=\frac {128 \, {\left (6 \, \cos \left (d x + c\right )^{5} + 10 \, \cos \left (d x + c\right )^{3} + 30 \, \cos \left (d x + c\right ) - 15 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 15 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} a^{4} - 320 \, {\left (4 \, \cos \left (d x + c\right )^{3} - \frac {6 \, \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{2} - 1} + 24 \, \cos \left (d x + c\right ) - 15 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 15 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} a^{4} - 5 \, {\left (4 \, \sin \left (2 \, d x + 2 \, c\right )^{3} - 60 \, d x - 60 \, c - 9 \, \sin \left (4 \, d x + 4 \, c\right ) - 48 \, \sin \left (2 \, d x + 2 \, c\right )\right )} a^{4} - 720 \, {\left (15 \, d x + 15 \, c + \frac {15 \, \tan \left (d x + c\right )^{4} + 25 \, \tan \left (d x + c\right )^{2} + 8}{\tan \left (d x + c\right )^{5} + 2 \, \tan \left (d x + c\right )^{3} + \tan \left (d x + c\right )}\right )} a^{4} + 160 \, {\left (15 \, d x + 15 \, c + \frac {15 \, \tan \left (d x + c\right )^{4} + 10 \, \tan \left (d x + c\right )^{2} - 2}{\tan \left (d x + c\right )^{5} + \tan \left (d x + c\right )^{3}}\right )} a^{4}}{960 \, d} \] Input:

integrate(cos(d*x+c)^2*cot(d*x+c)^4*(a+a*sin(d*x+c))^4,x, algorithm="maxim 
a")
 

Output:

1/960*(128*(6*cos(d*x + c)^5 + 10*cos(d*x + c)^3 + 30*cos(d*x + c) - 15*lo 
g(cos(d*x + c) + 1) + 15*log(cos(d*x + c) - 1))*a^4 - 320*(4*cos(d*x + c)^ 
3 - 6*cos(d*x + c)/(cos(d*x + c)^2 - 1) + 24*cos(d*x + c) - 15*log(cos(d*x 
 + c) + 1) + 15*log(cos(d*x + c) - 1))*a^4 - 5*(4*sin(2*d*x + 2*c)^3 - 60* 
d*x - 60*c - 9*sin(4*d*x + 4*c) - 48*sin(2*d*x + 2*c))*a^4 - 720*(15*d*x + 
 15*c + (15*tan(d*x + c)^4 + 25*tan(d*x + c)^2 + 8)/(tan(d*x + c)^5 + 2*ta 
n(d*x + c)^3 + tan(d*x + c)))*a^4 + 160*(15*d*x + 15*c + (15*tan(d*x + c)^ 
4 + 10*tan(d*x + c)^2 - 2)/(tan(d*x + c)^5 + tan(d*x + c)^3))*a^4)/d
 

Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 324, normalized size of antiderivative = 1.82 \[ \int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x))^4 \, dx=\frac {10 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 120 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2025 \, {\left (d x + c\right )} a^{4} - 1440 \, a^{4} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) + 450 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {10 \, {\left (264 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 45 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 12 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - a^{4}\right )}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3}} + \frac {2 \, {\left (1335 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{11} + 3085 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} - 3840 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{8} + 1110 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 7680 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 1110 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 7680 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 3085 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 4608 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1335 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 768 \, a^{4}\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{6}}}{240 \, d} \] Input:

integrate(cos(d*x+c)^2*cot(d*x+c)^4*(a+a*sin(d*x+c))^4,x, algorithm="giac" 
)
 

Output:

1/240*(10*a^4*tan(1/2*d*x + 1/2*c)^3 + 120*a^4*tan(1/2*d*x + 1/2*c)^2 - 20 
25*(d*x + c)*a^4 - 1440*a^4*log(abs(tan(1/2*d*x + 1/2*c))) + 450*a^4*tan(1 
/2*d*x + 1/2*c) + 10*(264*a^4*tan(1/2*d*x + 1/2*c)^3 - 45*a^4*tan(1/2*d*x 
+ 1/2*c)^2 - 12*a^4*tan(1/2*d*x + 1/2*c) - a^4)/tan(1/2*d*x + 1/2*c)^3 + 2 
*(1335*a^4*tan(1/2*d*x + 1/2*c)^11 + 3085*a^4*tan(1/2*d*x + 1/2*c)^9 - 384 
0*a^4*tan(1/2*d*x + 1/2*c)^8 + 1110*a^4*tan(1/2*d*x + 1/2*c)^7 - 7680*a^4* 
tan(1/2*d*x + 1/2*c)^6 - 1110*a^4*tan(1/2*d*x + 1/2*c)^5 - 7680*a^4*tan(1/ 
2*d*x + 1/2*c)^4 - 3085*a^4*tan(1/2*d*x + 1/2*c)^3 - 4608*a^4*tan(1/2*d*x 
+ 1/2*c)^2 - 1335*a^4*tan(1/2*d*x + 1/2*c) - 768*a^4)/(tan(1/2*d*x + 1/2*c 
)^2 + 1)^6)/d
 

Mupad [B] (verification not implemented)

Time = 32.79 (sec) , antiderivative size = 474, normalized size of antiderivative = 2.66 \[ \int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x))^4 \, dx =\text {Too large to display} \] Input:

int(cos(c + d*x)^2*cot(c + d*x)^4*(a + a*sin(c + d*x))^4,x)
 

Output:

(a^4*tan(c/2 + (d*x)/2)^2)/(2*d) + (a^4*tan(c/2 + (d*x)/2)^3)/(24*d) - (6* 
a^4*log(tan(c/2 + (d*x)/2)))/d - (135*a^4*atan((18225*a^8)/(64*((405*a^8)/ 
2 - (18225*a^8*tan(c/2 + (d*x)/2))/64)) + (405*a^8*tan(c/2 + (d*x)/2))/(2* 
((405*a^8)/2 - (18225*a^8*tan(c/2 + (d*x)/2))/64))))/(8*d) - (17*a^4*tan(c 
/2 + (d*x)/2)^2 + (376*a^4*tan(c/2 + (d*x)/2)^3)/5 + 184*a^4*tan(c/2 + (d* 
x)/2)^4 + (1836*a^4*tan(c/2 + (d*x)/2)^5)/5 + (1312*a^4*tan(c/2 + (d*x)/2) 
^6)/3 + 592*a^4*tan(c/2 + (d*x)/2)^7 + 379*a^4*tan(c/2 + (d*x)/2)^8 + 572* 
a^4*tan(c/2 + (d*x)/2)^9 + 153*a^4*tan(c/2 + (d*x)/2)^10 + 280*a^4*tan(c/2 
 + (d*x)/2)^11 - (346*a^4*tan(c/2 + (d*x)/2)^12)/3 + 4*a^4*tan(c/2 + (d*x) 
/2)^13 - 74*a^4*tan(c/2 + (d*x)/2)^14 + a^4/3 + 4*a^4*tan(c/2 + (d*x)/2))/ 
(d*(8*tan(c/2 + (d*x)/2)^3 + 48*tan(c/2 + (d*x)/2)^5 + 120*tan(c/2 + (d*x) 
/2)^7 + 160*tan(c/2 + (d*x)/2)^9 + 120*tan(c/2 + (d*x)/2)^11 + 48*tan(c/2 
+ (d*x)/2)^13 + 8*tan(c/2 + (d*x)/2)^15)) + (15*a^4*tan(c/2 + (d*x)/2))/(8 
*d)
 

Reduce [B] (verification not implemented)

Time = 3.13 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.08 \[ \int \cos ^2(c+d x) \cot ^4(c+d x) (a+a \sin (c+d x))^4 \, dx=\frac {a^{4} \left (40 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{8}+192 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{7}+230 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{6}-384 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{5}-1335 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{4}-768 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3}-880 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2}-480 \cos \left (d x +c \right ) \sin \left (d x +c \right )-80 \cos \left (d x +c \right )-1440 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{3}-2025 \sin \left (d x +c \right )^{3} d x +1488 \sin \left (d x +c \right )^{3}\right )}{240 \sin \left (d x +c \right )^{3} d} \] Input:

int(cos(d*x+c)^2*cot(d*x+c)^4*(a+a*sin(d*x+c))^4,x)
 

Output:

(a**4*(40*cos(c + d*x)*sin(c + d*x)**8 + 192*cos(c + d*x)*sin(c + d*x)**7 
+ 230*cos(c + d*x)*sin(c + d*x)**6 - 384*cos(c + d*x)*sin(c + d*x)**5 - 13 
35*cos(c + d*x)*sin(c + d*x)**4 - 768*cos(c + d*x)*sin(c + d*x)**3 - 880*c 
os(c + d*x)*sin(c + d*x)**2 - 480*cos(c + d*x)*sin(c + d*x) - 80*cos(c + d 
*x) - 1440*log(tan((c + d*x)/2))*sin(c + d*x)**3 - 2025*sin(c + d*x)**3*d* 
x + 1488*sin(c + d*x)**3))/(240*sin(c + d*x)**3*d)