\(\int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{5/2}} \, dx\) [37]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 38, antiderivative size = 238 \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{5/2}} \, dx=\frac {\cos (e+f x) (a+a \sin (e+f x))^{7/2}}{c f (c-c \sin (e+f x))^{3/2}}+\frac {32 a^4 \cos (e+f x) \log (1-\sin (e+f x))}{c^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {16 a^3 \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{c^2 f \sqrt {c-c \sin (e+f x)}}+\frac {4 a^2 \cos (e+f x) (a+a \sin (e+f x))^{3/2}}{c^2 f \sqrt {c-c \sin (e+f x)}}+\frac {4 a \cos (e+f x) (a+a \sin (e+f x))^{5/2}}{3 c^2 f \sqrt {c-c \sin (e+f x)}} \] Output:

cos(f*x+e)*(a+a*sin(f*x+e))^(7/2)/c/f/(c-c*sin(f*x+e))^(3/2)+32*a^4*cos(f* 
x+e)*ln(1-sin(f*x+e))/c^2/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)+ 
16*a^3*cos(f*x+e)*(a+a*sin(f*x+e))^(1/2)/c^2/f/(c-c*sin(f*x+e))^(1/2)+4*a^ 
2*cos(f*x+e)*(a+a*sin(f*x+e))^(3/2)/c^2/f/(c-c*sin(f*x+e))^(1/2)+4/3*a*cos 
(f*x+e)*(a+a*sin(f*x+e))^(5/2)/c^2/f/(c-c*sin(f*x+e))^(1/2)
 

Mathematica [A] (verified)

Time = 10.47 (sec) , antiderivative size = 196, normalized size of antiderivative = 0.82 \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{5/2}} \, dx=-\frac {a^3 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 \sqrt {a (1+\sin (e+f x))} \left (-177-172 \cos (2 (e+f x))+\cos (4 (e+f x))-1536 \log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )-396 \sin (e+f x)+1536 \log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sin (e+f x)-16 \sin (3 (e+f x))\right )}{24 c^2 f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (-1+\sin (e+f x))^2 \sqrt {c-c \sin (e+f x)}} \] Input:

Integrate[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(7/2))/(c - c*Sin[e + f*x]) 
^(5/2),x]
 

Output:

-1/24*(a^3*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^3*Sqrt[a*(1 + Sin[e + f*x 
])]*(-177 - 172*Cos[2*(e + f*x)] + Cos[4*(e + f*x)] - 1536*Log[Cos[(e + f* 
x)/2] - Sin[(e + f*x)/2]] - 396*Sin[e + f*x] + 1536*Log[Cos[(e + f*x)/2] - 
 Sin[(e + f*x)/2]]*Sin[e + f*x] - 16*Sin[3*(e + f*x)]))/(c^2*f*(Cos[(e + f 
*x)/2] + Sin[(e + f*x)/2])*(-1 + Sin[e + f*x])^2*Sqrt[c - c*Sin[e + f*x]])
 

Rubi [A] (verified)

Time = 1.57 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.03, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.395, Rules used = {3042, 3320, 3042, 3218, 3042, 3219, 3042, 3219, 3042, 3219, 3042, 3216, 3042, 3146, 16}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^2(e+f x) (a \sin (e+f x)+a)^{7/2}}{(c-c \sin (e+f x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (e+f x)^2 (a \sin (e+f x)+a)^{7/2}}{(c-c \sin (e+f x))^{5/2}}dx\)

\(\Big \downarrow \) 3320

\(\displaystyle \frac {\int \frac {(\sin (e+f x) a+a)^{9/2}}{(c-c \sin (e+f x))^{3/2}}dx}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {(\sin (e+f x) a+a)^{9/2}}{(c-c \sin (e+f x))^{3/2}}dx}{a c}\)

\(\Big \downarrow \) 3218

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {4 a \int \frac {(\sin (e+f x) a+a)^{7/2}}{\sqrt {c-c \sin (e+f x)}}dx}{c}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {4 a \int \frac {(\sin (e+f x) a+a)^{7/2}}{\sqrt {c-c \sin (e+f x)}}dx}{c}}{a c}\)

\(\Big \downarrow \) 3219

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {4 a \left (2 a \int \frac {(\sin (e+f x) a+a)^{5/2}}{\sqrt {c-c \sin (e+f x)}}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{3 f \sqrt {c-c \sin (e+f x)}}\right )}{c}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {4 a \left (2 a \int \frac {(\sin (e+f x) a+a)^{5/2}}{\sqrt {c-c \sin (e+f x)}}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{3 f \sqrt {c-c \sin (e+f x)}}\right )}{c}}{a c}\)

\(\Big \downarrow \) 3219

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {4 a \left (2 a \left (2 a \int \frac {(\sin (e+f x) a+a)^{3/2}}{\sqrt {c-c \sin (e+f x)}}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{3 f \sqrt {c-c \sin (e+f x)}}\right )}{c}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {4 a \left (2 a \left (2 a \int \frac {(\sin (e+f x) a+a)^{3/2}}{\sqrt {c-c \sin (e+f x)}}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{3 f \sqrt {c-c \sin (e+f x)}}\right )}{c}}{a c}\)

\(\Big \downarrow \) 3219

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {4 a \left (2 a \left (2 a \left (2 a \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {c-c \sin (e+f x)}}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{3 f \sqrt {c-c \sin (e+f x)}}\right )}{c}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {4 a \left (2 a \left (2 a \left (2 a \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {c-c \sin (e+f x)}}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{3 f \sqrt {c-c \sin (e+f x)}}\right )}{c}}{a c}\)

\(\Big \downarrow \) 3216

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {4 a \left (2 a \left (2 a \left (\frac {2 a^2 c \cos (e+f x) \int \frac {\cos (e+f x)}{c-c \sin (e+f x)}dx}{\sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{3 f \sqrt {c-c \sin (e+f x)}}\right )}{c}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {4 a \left (2 a \left (2 a \left (\frac {2 a^2 c \cos (e+f x) \int \frac {\cos (e+f x)}{c-c \sin (e+f x)}dx}{\sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{3 f \sqrt {c-c \sin (e+f x)}}\right )}{c}}{a c}\)

\(\Big \downarrow \) 3146

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {4 a \left (2 a \left (2 a \left (-\frac {2 a^2 \cos (e+f x) \int \frac {1}{c-c \sin (e+f x)}d(-c \sin (e+f x))}{f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{3 f \sqrt {c-c \sin (e+f x)}}\right )}{c}}{a c}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{f (c-c \sin (e+f x))^{3/2}}-\frac {4 a \left (2 a \left (2 a \left (-\frac {2 a^2 \cos (e+f x) \log (c-c \sin (e+f x))}{f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{2 f \sqrt {c-c \sin (e+f x)}}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{3 f \sqrt {c-c \sin (e+f x)}}\right )}{c}}{a c}\)

Input:

Int[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(7/2))/(c - c*Sin[e + f*x])^(5/2) 
,x]
 

Output:

((a*Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2))/(f*(c - c*Sin[e + f*x])^(3/2) 
) - (4*a*(-1/3*(a*Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2))/(f*Sqrt[c - c*S 
in[e + f*x]]) + 2*a*(-1/2*(a*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2))/(f*S 
qrt[c - c*Sin[e + f*x]]) + 2*a*((-2*a^2*Cos[e + f*x]*Log[c - c*Sin[e + f*x 
]])/(f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) - (a*Cos[e + f*x 
]*Sqrt[a + a*Sin[e + f*x]])/(f*Sqrt[c - c*Sin[e + f*x]])))))/c)/(a*c)
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3146
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_.), x_Symbol] :> Simp[1/(b^p*f)   Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x 
)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && I 
ntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/ 
2])
 

rule 3216
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)]], x_Symbol] :> Simp[a*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x 
]]*Sqrt[c + d*Sin[e + f*x]]))   Int[Cos[e + f*x]/(c + d*Sin[e + f*x]), x], 
x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0 
]
 

rule 3218
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
(m - 1)*((c + d*Sin[e + f*x])^n/(f*(2*n + 1))), x] - Simp[b*((2*m - 1)/(d*( 
2*n + 1)))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), 
 x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b 
^2, 0] && IGtQ[m - 1/2, 0] && LtQ[n, -1] &&  !(ILtQ[m + n, 0] && GtQ[2*m + 
n + 1, 0])
 

rule 3219
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Simp[a*((2*m - 1)/(m + n 
))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; Fre 
eQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I 
GtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m]) &&  !( 
ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])
 

rule 3320
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(a^(p/ 
2)*c^(p/2))   Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(n + 
p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && 
EqQ[a^2 - b^2, 0] && IntegerQ[p/2]
 
Maple [F]

\[\int \frac {\cos \left (f x +e \right )^{2} \left (a +a \sin \left (f x +e \right )\right )^{\frac {7}{2}}}{\left (c -c \sin \left (f x +e \right )\right )^{\frac {5}{2}}}d x\]

Input:

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(5/2),x)
 

Output:

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(5/2),x)
 

Fricas [F]

\[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{5/2}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {7}{2}} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(5/2),x, al 
gorithm="fricas")
 

Output:

integral((3*a^3*cos(f*x + e)^4 - 4*a^3*cos(f*x + e)^2 + (a^3*cos(f*x + e)^ 
4 - 4*a^3*cos(f*x + e)^2)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*s 
in(f*x + e) + c)/(3*c^3*cos(f*x + e)^2 - 4*c^3 - (c^3*cos(f*x + e)^2 - 4*c 
^3)*sin(f*x + e)), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**(7/2)/(c-c*sin(f*x+e))**(5/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{5/2}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {7}{2}} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(5/2),x, al 
gorithm="maxima")
 

Output:

integrate((a*sin(f*x + e) + a)^(7/2)*cos(f*x + e)^2/(-c*sin(f*x + e) + c)^ 
(5/2), x)
 

Giac [A] (verification not implemented)

Time = 0.43 (sec) , antiderivative size = 178, normalized size of antiderivative = 0.75 \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{5/2}} \, dx=-\frac {8 \, a^{\frac {7}{2}} \sqrt {c} {\left (\frac {12 \, \log \left (-\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 1\right )}{c^{3} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {3}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 1\right )} c^{3} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} + \frac {c^{6} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6} + 3 \, c^{6} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + 9 \, c^{6} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}}{c^{9} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}\right )} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{3 \, f} \] Input:

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(5/2),x, al 
gorithm="giac")
 

Output:

-8/3*a^(7/2)*sqrt(c)*(12*log(-cos(-1/4*pi + 1/2*f*x + 1/2*e)^2 + 1)/(c^3*s 
gn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) - 3/((cos(-1/4*pi + 1/2*f*x + 1/2*e)^2 
 - 1)*c^3*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) + (c^6*cos(-1/4*pi + 1/2*f* 
x + 1/2*e)^6 + 3*c^6*cos(-1/4*pi + 1/2*f*x + 1/2*e)^4 + 9*c^6*cos(-1/4*pi 
+ 1/2*f*x + 1/2*e)^2)/(c^9*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))))*sgn(cos(- 
1/4*pi + 1/2*f*x + 1/2*e))/f
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{5/2}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^2\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{7/2}}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \] Input:

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^(7/2))/(c - c*sin(e + f*x))^(5/2) 
,x)
 

Output:

int((cos(e + f*x)^2*(a + a*sin(e + f*x))^(7/2))/(c - c*sin(e + f*x))^(5/2) 
, x)
 

Reduce [F]

\[ \int \frac {\cos ^2(e+f x) (a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{5/2}} \, dx=\frac {\sqrt {c}\, \sqrt {a}\, a^{3} \left (-\left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \cos \left (f x +e \right )^{2} \sin \left (f x +e \right )^{3}}{\sin \left (f x +e \right )^{3}-3 \sin \left (f x +e \right )^{2}+3 \sin \left (f x +e \right )-1}d x \right )-3 \left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \cos \left (f x +e \right )^{2} \sin \left (f x +e \right )^{2}}{\sin \left (f x +e \right )^{3}-3 \sin \left (f x +e \right )^{2}+3 \sin \left (f x +e \right )-1}d x \right )-3 \left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \cos \left (f x +e \right )^{2} \sin \left (f x +e \right )}{\sin \left (f x +e \right )^{3}-3 \sin \left (f x +e \right )^{2}+3 \sin \left (f x +e \right )-1}d x \right )-\left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \cos \left (f x +e \right )^{2}}{\sin \left (f x +e \right )^{3}-3 \sin \left (f x +e \right )^{2}+3 \sin \left (f x +e \right )-1}d x \right )\right )}{c^{3}} \] Input:

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(5/2),x)
 

Output:

(sqrt(c)*sqrt(a)*a**3*( - int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) 
 + 1)*cos(e + f*x)**2*sin(e + f*x)**3)/(sin(e + f*x)**3 - 3*sin(e + f*x)** 
2 + 3*sin(e + f*x) - 1),x) - 3*int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + 
 f*x) + 1)*cos(e + f*x)**2*sin(e + f*x)**2)/(sin(e + f*x)**3 - 3*sin(e + f 
*x)**2 + 3*sin(e + f*x) - 1),x) - 3*int((sqrt(sin(e + f*x) + 1)*sqrt( - si 
n(e + f*x) + 1)*cos(e + f*x)**2*sin(e + f*x))/(sin(e + f*x)**3 - 3*sin(e + 
 f*x)**2 + 3*sin(e + f*x) - 1),x) - int((sqrt(sin(e + f*x) + 1)*sqrt( - si 
n(e + f*x) + 1)*cos(e + f*x)**2)/(sin(e + f*x)**3 - 3*sin(e + f*x)**2 + 3* 
sin(e + f*x) - 1),x)))/c**3