\(\int \frac {\cos (c+d x) \cot ^5(c+d x)}{(a+a \sin (c+d x))^2} \, dx\) [641]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 82 \[ \int \frac {\cos (c+d x) \cot ^5(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {5 \text {arctanh}(\cos (c+d x))}{8 a^2 d}+\frac {2 \cot ^3(c+d x)}{3 a^2 d}-\frac {3 \cot (c+d x) \csc (c+d x)}{8 a^2 d}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a^2 d} \] Output:

5/8*arctanh(cos(d*x+c))/a^2/d+2/3*cot(d*x+c)^3/a^2/d-3/8*cot(d*x+c)*csc(d* 
x+c)/a^2/d-1/4*cot(d*x+c)*csc(d*x+c)^3/a^2/d
 

Mathematica [A] (verified)

Time = 2.82 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.41 \[ \int \frac {\cos (c+d x) \cot ^5(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\left (\csc \left (\frac {1}{2} (c+d x)\right )+\sec \left (\frac {1}{2} (c+d x)\right )\right )^4 \left (-33 \cos (c+d x)+60 \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right ) \sin ^4(c+d x)+\cos (3 (c+d x)) (9+16 \sin (c+d x))+24 \sin (2 (c+d x))\right )}{1536 a^2 d (1+\sin (c+d x))^2} \] Input:

Integrate[(Cos[c + d*x]*Cot[c + d*x]^5)/(a + a*Sin[c + d*x])^2,x]
 

Output:

((Csc[(c + d*x)/2] + Sec[(c + d*x)/2])^4*(-33*Cos[c + d*x] + 60*(Log[Cos[( 
c + d*x)/2]] - Log[Sin[(c + d*x)/2]])*Sin[c + d*x]^4 + Cos[3*(c + d*x)]*(9 
 + 16*Sin[c + d*x]) + 24*Sin[2*(c + d*x)]))/(1536*a^2*d*(1 + Sin[c + d*x]) 
^2)
 

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.05, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {3042, 3354, 3042, 3352, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos (c+d x) \cot ^5(c+d x)}{(a \sin (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^6}{\sin (c+d x)^5 (a \sin (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 3354

\(\displaystyle \frac {\int \cot ^2(c+d x) \csc ^3(c+d x) (a-a \sin (c+d x))^2dx}{a^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\cos (c+d x)^2 (a-a \sin (c+d x))^2}{\sin (c+d x)^5}dx}{a^4}\)

\(\Big \downarrow \) 3352

\(\displaystyle \frac {\int \left (a^2 \cot ^2(c+d x) \csc ^3(c+d x)-2 a^2 \cot ^2(c+d x) \csc ^2(c+d x)+a^2 \cot ^2(c+d x) \csc (c+d x)\right )dx}{a^4}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {5 a^2 \text {arctanh}(\cos (c+d x))}{8 d}+\frac {2 a^2 \cot ^3(c+d x)}{3 d}-\frac {a^2 \cot (c+d x) \csc ^3(c+d x)}{4 d}-\frac {3 a^2 \cot (c+d x) \csc (c+d x)}{8 d}}{a^4}\)

Input:

Int[(Cos[c + d*x]*Cot[c + d*x]^5)/(a + a*Sin[c + d*x])^2,x]
 

Output:

((5*a^2*ArcTanh[Cos[c + d*x]])/(8*d) + (2*a^2*Cot[c + d*x]^3)/(3*d) - (3*a 
^2*Cot[c + d*x]*Csc[c + d*x])/(8*d) - (a^2*Cot[c + d*x]*Csc[c + d*x]^3)/(4 
*d))/a^4
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3352
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Int[ExpandTrig 
[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x] /; F 
reeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]
 

rule 3354
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(a/g)^(2* 
m)   Int[(g*Cos[e + f*x])^(2*m + p)*((d*Sin[e + f*x])^n/(a - b*Sin[e + f*x] 
)^m), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && 
ILtQ[m, 0]
 
Maple [A] (verified)

Time = 1.32 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.51

method result size
derivativedivides \(\frac {\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{4}-\frac {4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}+2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {2}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-\frac {4}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {1}{4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}+\frac {4}{3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}-10 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16 d \,a^{2}}\) \(124\)
default \(\frac {\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{4}-\frac {4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3}+2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {2}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-\frac {4}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {1}{4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}+\frac {4}{3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}-10 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16 d \,a^{2}}\) \(124\)
risch \(\frac {-48 i {\mathrm e}^{6 i \left (d x +c \right )}+9 \,{\mathrm e}^{7 i \left (d x +c \right )}+48 i {\mathrm e}^{4 i \left (d x +c \right )}-33 \,{\mathrm e}^{5 i \left (d x +c \right )}-16 i {\mathrm e}^{2 i \left (d x +c \right )}-33 \,{\mathrm e}^{3 i \left (d x +c \right )}+16 i+9 \,{\mathrm e}^{i \left (d x +c \right )}}{12 a^{2} d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{4}}-\frac {5 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{8 d \,a^{2}}+\frac {5 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{8 d \,a^{2}}\) \(146\)

Input:

int(cos(d*x+c)*cot(d*x+c)^5/(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)
 

Output:

1/16/d/a^2*(1/4*tan(1/2*d*x+1/2*c)^4-4/3*tan(1/2*d*x+1/2*c)^3+2*tan(1/2*d* 
x+1/2*c)^2+4*tan(1/2*d*x+1/2*c)-2/tan(1/2*d*x+1/2*c)^2-4/tan(1/2*d*x+1/2*c 
)-1/4/tan(1/2*d*x+1/2*c)^4+4/3/tan(1/2*d*x+1/2*c)^3-10*ln(tan(1/2*d*x+1/2* 
c)))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.68 \[ \int \frac {\cos (c+d x) \cot ^5(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {32 \, \cos \left (d x + c\right )^{3} \sin \left (d x + c\right ) + 18 \, \cos \left (d x + c\right )^{3} + 15 \, {\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 15 \, {\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 30 \, \cos \left (d x + c\right )}{48 \, {\left (a^{2} d \cos \left (d x + c\right )^{4} - 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d\right )}} \] Input:

integrate(cos(d*x+c)*cot(d*x+c)^5/(a+a*sin(d*x+c))^2,x, algorithm="fricas" 
)
 

Output:

1/48*(32*cos(d*x + c)^3*sin(d*x + c) + 18*cos(d*x + c)^3 + 15*(cos(d*x + c 
)^4 - 2*cos(d*x + c)^2 + 1)*log(1/2*cos(d*x + c) + 1/2) - 15*(cos(d*x + c) 
^4 - 2*cos(d*x + c)^2 + 1)*log(-1/2*cos(d*x + c) + 1/2) - 30*cos(d*x + c)) 
/(a^2*d*cos(d*x + c)^4 - 2*a^2*d*cos(d*x + c)^2 + a^2*d)
 

Sympy [F]

\[ \int \frac {\cos (c+d x) \cot ^5(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\int \frac {\cos {\left (c + d x \right )} \cot ^{5}{\left (c + d x \right )}}{\sin ^{2}{\left (c + d x \right )} + 2 \sin {\left (c + d x \right )} + 1}\, dx}{a^{2}} \] Input:

integrate(cos(d*x+c)*cot(d*x+c)**5/(a+a*sin(d*x+c))**2,x)
 

Output:

Integral(cos(c + d*x)*cot(c + d*x)**5/(sin(c + d*x)**2 + 2*sin(c + d*x) + 
1), x)/a**2
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 194 vs. \(2 (74) = 148\).

Time = 0.04 (sec) , antiderivative size = 194, normalized size of antiderivative = 2.37 \[ \int \frac {\cos (c+d x) \cot ^5(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\frac {\frac {48 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {24 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {16 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}}{a^{2}} - \frac {120 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}} + \frac {{\left (\frac {16 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {24 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {48 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - 3\right )} {\left (\cos \left (d x + c\right ) + 1\right )}^{4}}{a^{2} \sin \left (d x + c\right )^{4}}}{192 \, d} \] Input:

integrate(cos(d*x+c)*cot(d*x+c)^5/(a+a*sin(d*x+c))^2,x, algorithm="maxima" 
)
 

Output:

1/192*((48*sin(d*x + c)/(cos(d*x + c) + 1) + 24*sin(d*x + c)^2/(cos(d*x + 
c) + 1)^2 - 16*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c)^4/(cos 
(d*x + c) + 1)^4)/a^2 - 120*log(sin(d*x + c)/(cos(d*x + c) + 1))/a^2 + (16 
*sin(d*x + c)/(cos(d*x + c) + 1) - 24*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 
- 48*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 3)*(cos(d*x + c) + 1)^4/(a^2*si 
n(d*x + c)^4))/d
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 158 vs. \(2 (74) = 148\).

Time = 0.18 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.93 \[ \int \frac {\cos (c+d x) \cot ^5(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {\frac {120 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a^{2}} - \frac {250 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 48 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 24 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 16 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 3}{a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4}} - \frac {3 \, a^{6} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 16 \, a^{6} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 24 \, a^{6} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 48 \, a^{6} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{8}}}{192 \, d} \] Input:

integrate(cos(d*x+c)*cot(d*x+c)^5/(a+a*sin(d*x+c))^2,x, algorithm="giac")
 

Output:

-1/192*(120*log(abs(tan(1/2*d*x + 1/2*c)))/a^2 - (250*tan(1/2*d*x + 1/2*c) 
^4 - 48*tan(1/2*d*x + 1/2*c)^3 - 24*tan(1/2*d*x + 1/2*c)^2 + 16*tan(1/2*d* 
x + 1/2*c) - 3)/(a^2*tan(1/2*d*x + 1/2*c)^4) - (3*a^6*tan(1/2*d*x + 1/2*c) 
^4 - 16*a^6*tan(1/2*d*x + 1/2*c)^3 + 24*a^6*tan(1/2*d*x + 1/2*c)^2 + 48*a^ 
6*tan(1/2*d*x + 1/2*c))/a^8)/d
 

Mupad [B] (verification not implemented)

Time = 32.62 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.84 \[ \int \frac {\cos (c+d x) \cot ^5(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,a^2\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{12\,a^2\,d}+\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{64\,a^2\,d}-\frac {5\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{8\,a^2\,d}+\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4\,a^2\,d}-\frac {{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-\frac {4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{3}+\frac {1}{4}\right )}{16\,a^2\,d} \] Input:

int((cos(c + d*x)*cot(c + d*x)^5)/(a + a*sin(c + d*x))^2,x)
 

Output:

tan(c/2 + (d*x)/2)^2/(8*a^2*d) - tan(c/2 + (d*x)/2)^3/(12*a^2*d) + tan(c/2 
 + (d*x)/2)^4/(64*a^2*d) - (5*log(tan(c/2 + (d*x)/2)))/(8*a^2*d) + tan(c/2 
 + (d*x)/2)/(4*a^2*d) - (cot(c/2 + (d*x)/2)^4*(2*tan(c/2 + (d*x)/2)^2 - (4 
*tan(c/2 + (d*x)/2))/3 + 4*tan(c/2 + (d*x)/2)^3 + 1/4))/(16*a^2*d)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.11 \[ \int \frac {\cos (c+d x) \cot ^5(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {-16 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3}-9 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2}+16 \cos \left (d x +c \right ) \sin \left (d x +c \right )-6 \cos \left (d x +c \right )-15 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{4}}{24 \sin \left (d x +c \right )^{4} a^{2} d} \] Input:

int(cos(d*x+c)*cot(d*x+c)^5/(a+a*sin(d*x+c))^2,x)
 

Output:

( - 16*cos(c + d*x)*sin(c + d*x)**3 - 9*cos(c + d*x)*sin(c + d*x)**2 + 16* 
cos(c + d*x)*sin(c + d*x) - 6*cos(c + d*x) - 15*log(tan((c + d*x)/2))*sin( 
c + d*x)**4)/(24*sin(c + d*x)**4*a**2*d)