\(\int \frac {\cos ^8(c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx\) [724]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 159 \[ \int \frac {\cos ^8(c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {3 x}{64 a^2}-\frac {2 \cos ^5(c+d x)}{5 a^2 d}+\frac {3 \cos ^7(c+d x)}{7 a^2 d}-\frac {\cos ^9(c+d x)}{9 a^2 d}-\frac {3 \cos (c+d x) \sin (c+d x)}{64 a^2 d}-\frac {\cos ^3(c+d x) \sin (c+d x)}{32 a^2 d}+\frac {\cos ^5(c+d x) \sin (c+d x)}{8 a^2 d}+\frac {\cos ^5(c+d x) \sin ^3(c+d x)}{4 a^2 d} \] Output:

-3/64*x/a^2-2/5*cos(d*x+c)^5/a^2/d+3/7*cos(d*x+c)^7/a^2/d-1/9*cos(d*x+c)^9 
/a^2/d-3/64*cos(d*x+c)*sin(d*x+c)/a^2/d-1/32*cos(d*x+c)^3*sin(d*x+c)/a^2/d 
+1/8*cos(d*x+c)^5*sin(d*x+c)/a^2/d+1/4*cos(d*x+c)^5*sin(d*x+c)^3/a^2/d
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(430\) vs. \(2(159)=318\).

Time = 6.40 (sec) , antiderivative size = 430, normalized size of antiderivative = 2.70 \[ \int \frac {\cos ^8(c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {420 (7+330 c+36 d x) \cos \left (\frac {c}{2}\right )+11340 \cos \left (\frac {c}{2}+d x\right )+11340 \cos \left (\frac {3 c}{2}+d x\right )+3360 \cos \left (\frac {5 c}{2}+3 d x\right )+3360 \cos \left (\frac {7 c}{2}+3 d x\right )-2520 \cos \left (\frac {7 c}{2}+4 d x\right )+2520 \cos \left (\frac {9 c}{2}+4 d x\right )-1008 \cos \left (\frac {9 c}{2}+5 d x\right )-1008 \cos \left (\frac {11 c}{2}+5 d x\right )-450 \cos \left (\frac {13 c}{2}+7 d x\right )-450 \cos \left (\frac {15 c}{2}+7 d x\right )+315 \cos \left (\frac {15 c}{2}+8 d x\right )-315 \cos \left (\frac {17 c}{2}+8 d x\right )+70 \cos \left (\frac {17 c}{2}+9 d x\right )+70 \cos \left (\frac {19 c}{2}+9 d x\right )-78960 \sin \left (\frac {c}{2}\right )+138600 c \sin \left (\frac {c}{2}\right )+15120 d x \sin \left (\frac {c}{2}\right )-11340 \sin \left (\frac {c}{2}+d x\right )+11340 \sin \left (\frac {3 c}{2}+d x\right )-3360 \sin \left (\frac {5 c}{2}+3 d x\right )+3360 \sin \left (\frac {7 c}{2}+3 d x\right )-2520 \sin \left (\frac {7 c}{2}+4 d x\right )-2520 \sin \left (\frac {9 c}{2}+4 d x\right )+1008 \sin \left (\frac {9 c}{2}+5 d x\right )-1008 \sin \left (\frac {11 c}{2}+5 d x\right )+450 \sin \left (\frac {13 c}{2}+7 d x\right )-450 \sin \left (\frac {15 c}{2}+7 d x\right )+315 \sin \left (\frac {15 c}{2}+8 d x\right )+315 \sin \left (\frac {17 c}{2}+8 d x\right )-70 \sin \left (\frac {17 c}{2}+9 d x\right )+70 \sin \left (\frac {19 c}{2}+9 d x\right )}{322560 a^2 d \left (\cos \left (\frac {c}{2}\right )+\sin \left (\frac {c}{2}\right )\right )} \] Input:

Integrate[(Cos[c + d*x]^8*Sin[c + d*x]^3)/(a + a*Sin[c + d*x])^2,x]
 

Output:

-1/322560*(420*(7 + 330*c + 36*d*x)*Cos[c/2] + 11340*Cos[c/2 + d*x] + 1134 
0*Cos[(3*c)/2 + d*x] + 3360*Cos[(5*c)/2 + 3*d*x] + 3360*Cos[(7*c)/2 + 3*d* 
x] - 2520*Cos[(7*c)/2 + 4*d*x] + 2520*Cos[(9*c)/2 + 4*d*x] - 1008*Cos[(9*c 
)/2 + 5*d*x] - 1008*Cos[(11*c)/2 + 5*d*x] - 450*Cos[(13*c)/2 + 7*d*x] - 45 
0*Cos[(15*c)/2 + 7*d*x] + 315*Cos[(15*c)/2 + 8*d*x] - 315*Cos[(17*c)/2 + 8 
*d*x] + 70*Cos[(17*c)/2 + 9*d*x] + 70*Cos[(19*c)/2 + 9*d*x] - 78960*Sin[c/ 
2] + 138600*c*Sin[c/2] + 15120*d*x*Sin[c/2] - 11340*Sin[c/2 + d*x] + 11340 
*Sin[(3*c)/2 + d*x] - 3360*Sin[(5*c)/2 + 3*d*x] + 3360*Sin[(7*c)/2 + 3*d*x 
] - 2520*Sin[(7*c)/2 + 4*d*x] - 2520*Sin[(9*c)/2 + 4*d*x] + 1008*Sin[(9*c) 
/2 + 5*d*x] - 1008*Sin[(11*c)/2 + 5*d*x] + 450*Sin[(13*c)/2 + 7*d*x] - 450 
*Sin[(15*c)/2 + 7*d*x] + 315*Sin[(15*c)/2 + 8*d*x] + 315*Sin[(17*c)/2 + 8* 
d*x] - 70*Sin[(17*c)/2 + 9*d*x] + 70*Sin[(19*c)/2 + 9*d*x])/(a^2*d*(Cos[c/ 
2] + Sin[c/2]))
 

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.03, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {3042, 3354, 3042, 3352, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^3(c+d x) \cos ^8(c+d x)}{(a \sin (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)^3 \cos (c+d x)^8}{(a \sin (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 3354

\(\displaystyle \frac {\int \cos ^4(c+d x) \sin ^3(c+d x) (a-a \sin (c+d x))^2dx}{a^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \cos (c+d x)^4 \sin (c+d x)^3 (a-a \sin (c+d x))^2dx}{a^4}\)

\(\Big \downarrow \) 3352

\(\displaystyle \frac {\int \left (a^2 \cos ^4(c+d x) \sin ^5(c+d x)-2 a^2 \cos ^4(c+d x) \sin ^4(c+d x)+a^2 \cos ^4(c+d x) \sin ^3(c+d x)\right )dx}{a^4}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {-\frac {a^2 \cos ^9(c+d x)}{9 d}+\frac {3 a^2 \cos ^7(c+d x)}{7 d}-\frac {2 a^2 \cos ^5(c+d x)}{5 d}+\frac {a^2 \sin ^3(c+d x) \cos ^5(c+d x)}{4 d}+\frac {a^2 \sin (c+d x) \cos ^5(c+d x)}{8 d}-\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{32 d}-\frac {3 a^2 \sin (c+d x) \cos (c+d x)}{64 d}-\frac {3 a^2 x}{64}}{a^4}\)

Input:

Int[(Cos[c + d*x]^8*Sin[c + d*x]^3)/(a + a*Sin[c + d*x])^2,x]
 

Output:

((-3*a^2*x)/64 - (2*a^2*Cos[c + d*x]^5)/(5*d) + (3*a^2*Cos[c + d*x]^7)/(7* 
d) - (a^2*Cos[c + d*x]^9)/(9*d) - (3*a^2*Cos[c + d*x]*Sin[c + d*x])/(64*d) 
 - (a^2*Cos[c + d*x]^3*Sin[c + d*x])/(32*d) + (a^2*Cos[c + d*x]^5*Sin[c + 
d*x])/(8*d) + (a^2*Cos[c + d*x]^5*Sin[c + d*x]^3)/(4*d))/a^4
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3352
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Int[ExpandTrig 
[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x] /; F 
reeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]
 

rule 3354
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(a/g)^(2* 
m)   Int[(g*Cos[e + f*x])^(2*m + p)*((d*Sin[e + f*x])^n/(a - b*Sin[e + f*x] 
)^m), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && 
ILtQ[m, 0]
 
Maple [A] (verified)

Time = 1.80 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.56

method result size
parallelrisch \(\frac {-7560 d x +450 \cos \left (7 d x +7 c \right )+1008 \cos \left (5 d x +5 c \right )-3360 \cos \left (3 d x +3 c \right )-11340 \cos \left (d x +c \right )-70 \cos \left (9 d x +9 c \right )-315 \sin \left (8 d x +8 c \right )+2520 \sin \left (4 d x +4 c \right )-13312}{161280 d \,a^{2}}\) \(89\)
risch \(-\frac {3 x}{64 a^{2}}-\frac {9 \cos \left (d x +c \right )}{128 a^{2} d}-\frac {\cos \left (9 d x +9 c \right )}{2304 d \,a^{2}}-\frac {\sin \left (8 d x +8 c \right )}{512 d \,a^{2}}+\frac {5 \cos \left (7 d x +7 c \right )}{1792 d \,a^{2}}+\frac {\cos \left (5 d x +5 c \right )}{160 a^{2} d}+\frac {\sin \left (4 d x +4 c \right )}{64 d \,a^{2}}-\frac {\cos \left (3 d x +3 c \right )}{48 d \,a^{2}}\) \(124\)
derivativedivides \(\frac {\frac {16 \left (-\frac {13}{1260}+\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{512}-\frac {13 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{140}+\frac {13 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{256}-\frac {17 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{140}-\frac {155 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{256}+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{20}+\frac {169 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{256}-\frac {41 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{20}+\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{4}-\frac {169 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{256}-\frac {11 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}}{12}+\frac {155 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{13}}{256}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{14}}{4}-\frac {13 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{15}}{256}-\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{17}}{512}\right )}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{9}}-\frac {3 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32}}{d \,a^{2}}\) \(233\)
default \(\frac {\frac {16 \left (-\frac {13}{1260}+\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{512}-\frac {13 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{140}+\frac {13 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{256}-\frac {17 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{140}-\frac {155 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{256}+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{20}+\frac {169 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{256}-\frac {41 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{20}+\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{4}-\frac {169 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{256}-\frac {11 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}}{12}+\frac {155 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{13}}{256}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{14}}{4}-\frac {13 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{15}}{256}-\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{17}}{512}\right )}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{9}}-\frac {3 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{32}}{d \,a^{2}}\) \(233\)

Input:

int(cos(d*x+c)^8*sin(d*x+c)^3/(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)
 

Output:

1/161280*(-7560*d*x+450*cos(7*d*x+7*c)+1008*cos(5*d*x+5*c)-3360*cos(3*d*x+ 
3*c)-11340*cos(d*x+c)-70*cos(9*d*x+9*c)-315*sin(8*d*x+8*c)+2520*sin(4*d*x+ 
4*c)-13312)/d/a^2
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.57 \[ \int \frac {\cos ^8(c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {2240 \, \cos \left (d x + c\right )^{9} - 8640 \, \cos \left (d x + c\right )^{7} + 8064 \, \cos \left (d x + c\right )^{5} + 945 \, d x + 315 \, {\left (16 \, \cos \left (d x + c\right )^{7} - 24 \, \cos \left (d x + c\right )^{5} + 2 \, \cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{20160 \, a^{2} d} \] Input:

integrate(cos(d*x+c)^8*sin(d*x+c)^3/(a+a*sin(d*x+c))^2,x, algorithm="frica 
s")
 

Output:

-1/20160*(2240*cos(d*x + c)^9 - 8640*cos(d*x + c)^7 + 8064*cos(d*x + c)^5 
+ 945*d*x + 315*(16*cos(d*x + c)^7 - 24*cos(d*x + c)^5 + 2*cos(d*x + c)^3 
+ 3*cos(d*x + c))*sin(d*x + c))/(a^2*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^8(c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**8*sin(d*x+c)**3/(a+a*sin(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 542 vs. \(2 (143) = 286\).

Time = 0.15 (sec) , antiderivative size = 542, normalized size of antiderivative = 3.41 \[ \int \frac {\cos ^8(c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx =\text {Too large to display} \] Input:

integrate(cos(d*x+c)^8*sin(d*x+c)^3/(a+a*sin(d*x+c))^2,x, algorithm="maxim 
a")
 

Output:

1/10080*((945*sin(d*x + c)/(cos(d*x + c) + 1) - 14976*sin(d*x + c)^2/(cos( 
d*x + c) + 1)^2 + 8190*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 19584*sin(d*x 
 + c)^4/(cos(d*x + c) + 1)^4 - 97650*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 + 
 8064*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 106470*sin(d*x + c)^7/(cos(d*x 
 + c) + 1)^7 - 330624*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 + 120960*sin(d*x 
 + c)^10/(cos(d*x + c) + 1)^10 - 106470*sin(d*x + c)^11/(cos(d*x + c) + 1) 
^11 - 147840*sin(d*x + c)^12/(cos(d*x + c) + 1)^12 + 97650*sin(d*x + c)^13 
/(cos(d*x + c) + 1)^13 - 40320*sin(d*x + c)^14/(cos(d*x + c) + 1)^14 - 819 
0*sin(d*x + c)^15/(cos(d*x + c) + 1)^15 - 945*sin(d*x + c)^17/(cos(d*x + c 
) + 1)^17 - 1664)/(a^2 + 9*a^2*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 36*a^ 
2*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 84*a^2*sin(d*x + c)^6/(cos(d*x + c 
) + 1)^6 + 126*a^2*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 + 126*a^2*sin(d*x + 
 c)^10/(cos(d*x + c) + 1)^10 + 84*a^2*sin(d*x + c)^12/(cos(d*x + c) + 1)^1 
2 + 36*a^2*sin(d*x + c)^14/(cos(d*x + c) + 1)^14 + 9*a^2*sin(d*x + c)^16/( 
cos(d*x + c) + 1)^16 + a^2*sin(d*x + c)^18/(cos(d*x + c) + 1)^18) - 945*ar 
ctan(sin(d*x + c)/(cos(d*x + c) + 1))/a^2)/d
 

Giac [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.45 \[ \int \frac {\cos ^8(c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {\frac {945 \, {\left (d x + c\right )}}{a^{2}} + \frac {2 \, {\left (945 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{17} + 8190 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{15} + 40320 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{14} - 97650 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{13} + 147840 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{12} + 106470 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{11} - 120960 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{10} + 330624 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{8} - 106470 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 8064 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 97650 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 19584 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 8190 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 14976 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 945 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1664\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{9} a^{2}}}{20160 \, d} \] Input:

integrate(cos(d*x+c)^8*sin(d*x+c)^3/(a+a*sin(d*x+c))^2,x, algorithm="giac" 
)
 

Output:

-1/20160*(945*(d*x + c)/a^2 + 2*(945*tan(1/2*d*x + 1/2*c)^17 + 8190*tan(1/ 
2*d*x + 1/2*c)^15 + 40320*tan(1/2*d*x + 1/2*c)^14 - 97650*tan(1/2*d*x + 1/ 
2*c)^13 + 147840*tan(1/2*d*x + 1/2*c)^12 + 106470*tan(1/2*d*x + 1/2*c)^11 
- 120960*tan(1/2*d*x + 1/2*c)^10 + 330624*tan(1/2*d*x + 1/2*c)^8 - 106470* 
tan(1/2*d*x + 1/2*c)^7 - 8064*tan(1/2*d*x + 1/2*c)^6 + 97650*tan(1/2*d*x + 
 1/2*c)^5 + 19584*tan(1/2*d*x + 1/2*c)^4 - 8190*tan(1/2*d*x + 1/2*c)^3 + 1 
4976*tan(1/2*d*x + 1/2*c)^2 - 945*tan(1/2*d*x + 1/2*c) + 1664)/((tan(1/2*d 
*x + 1/2*c)^2 + 1)^9*a^2))/d
 

Mupad [B] (verification not implemented)

Time = 34.73 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.42 \[ \int \frac {\cos ^8(c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {3\,x}{64\,a^2}-\frac {\frac {3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{17}}{32}+\frac {13\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{15}}{16}+4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{14}-\frac {155\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{13}}{16}+\frac {44\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}}{3}+\frac {169\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}}{16}-12\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}+\frac {164\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8}{5}-\frac {169\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{16}-\frac {4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{5}+\frac {155\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{16}+\frac {68\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{35}-\frac {13\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{16}+\frac {52\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{35}-\frac {3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{32}+\frac {52}{315}}{a^2\,d\,{\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}^9} \] Input:

int((cos(c + d*x)^8*sin(c + d*x)^3)/(a + a*sin(c + d*x))^2,x)
 

Output:

- (3*x)/(64*a^2) - ((52*tan(c/2 + (d*x)/2)^2)/35 - (3*tan(c/2 + (d*x)/2))/ 
32 - (13*tan(c/2 + (d*x)/2)^3)/16 + (68*tan(c/2 + (d*x)/2)^4)/35 + (155*ta 
n(c/2 + (d*x)/2)^5)/16 - (4*tan(c/2 + (d*x)/2)^6)/5 - (169*tan(c/2 + (d*x) 
/2)^7)/16 + (164*tan(c/2 + (d*x)/2)^8)/5 - 12*tan(c/2 + (d*x)/2)^10 + (169 
*tan(c/2 + (d*x)/2)^11)/16 + (44*tan(c/2 + (d*x)/2)^12)/3 - (155*tan(c/2 + 
 (d*x)/2)^13)/16 + 4*tan(c/2 + (d*x)/2)^14 + (13*tan(c/2 + (d*x)/2)^15)/16 
 + (3*tan(c/2 + (d*x)/2)^17)/32 + 52/315)/(a^2*d*(tan(c/2 + (d*x)/2)^2 + 1 
)^9)
 

Reduce [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.93 \[ \int \frac {\cos ^8(c+d x) \sin ^3(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {-2240 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{8}+5040 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{7}+320 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{6}-7560 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{5}+4416 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{4}+630 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3}-832 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2}+945 \cos \left (d x +c \right ) \sin \left (d x +c \right )-1664 \cos \left (d x +c \right )-945 d x +1664}{20160 a^{2} d} \] Input:

int(cos(d*x+c)^8*sin(d*x+c)^3/(a+a*sin(d*x+c))^2,x)
 

Output:

( - 2240*cos(c + d*x)*sin(c + d*x)**8 + 5040*cos(c + d*x)*sin(c + d*x)**7 
+ 320*cos(c + d*x)*sin(c + d*x)**6 - 7560*cos(c + d*x)*sin(c + d*x)**5 + 4 
416*cos(c + d*x)*sin(c + d*x)**4 + 630*cos(c + d*x)*sin(c + d*x)**3 - 832* 
cos(c + d*x)*sin(c + d*x)**2 + 945*cos(c + d*x)*sin(c + d*x) - 1664*cos(c 
+ d*x) - 945*d*x + 1664)/(20160*a**2*d)