\(\int \frac {\cot ^8(c+d x)}{(a+a \sin (c+d x))^2} \, dx\) [734]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 124 \[ \int \frac {\cot ^8(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\text {arctanh}(\cos (c+d x))}{8 a^2 d}-\frac {2 \cot ^5(c+d x)}{5 a^2 d}-\frac {\cot ^7(c+d x)}{7 a^2 d}+\frac {\cot (c+d x) \csc (c+d x)}{8 a^2 d}-\frac {7 \cot (c+d x) \csc ^3(c+d x)}{12 a^2 d}+\frac {\cot (c+d x) \csc ^5(c+d x)}{3 a^2 d} \] Output:

1/8*arctanh(cos(d*x+c))/a^2/d-2/5*cot(d*x+c)^5/a^2/d-1/7*cot(d*x+c)^7/a^2/ 
d+1/8*cot(d*x+c)*csc(d*x+c)/a^2/d-7/12*cot(d*x+c)*csc(d*x+c)^3/a^2/d+1/3*c 
ot(d*x+c)*csc(d*x+c)^5/a^2/d
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(251\) vs. \(2(124)=248\).

Time = 3.82 (sec) , antiderivative size = 251, normalized size of antiderivative = 2.02 \[ \int \frac {\cot ^8(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {\csc ^7(c+d x) \left (5880 \cos (c+d x)+2184 \cos (3 (c+d x))-168 \cos (5 (c+d x))-216 \cos (7 (c+d x))-3675 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right ) \sin (c+d x)+3675 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \sin (c+d x)-2170 \sin (2 (c+d x))+2205 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right ) \sin (3 (c+d x))-2205 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \sin (3 (c+d x))-3080 \sin (4 (c+d x))-735 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right ) \sin (5 (c+d x))+735 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \sin (5 (c+d x))-210 \sin (6 (c+d x))+105 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right ) \sin (7 (c+d x))-105 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \sin (7 (c+d x))\right )}{53760 a^2 d} \] Input:

Integrate[Cot[c + d*x]^8/(a + a*Sin[c + d*x])^2,x]
 

Output:

-1/53760*(Csc[c + d*x]^7*(5880*Cos[c + d*x] + 2184*Cos[3*(c + d*x)] - 168* 
Cos[5*(c + d*x)] - 216*Cos[7*(c + d*x)] - 3675*Log[Cos[(c + d*x)/2]]*Sin[c 
 + d*x] + 3675*Log[Sin[(c + d*x)/2]]*Sin[c + d*x] - 2170*Sin[2*(c + d*x)] 
+ 2205*Log[Cos[(c + d*x)/2]]*Sin[3*(c + d*x)] - 2205*Log[Sin[(c + d*x)/2]] 
*Sin[3*(c + d*x)] - 3080*Sin[4*(c + d*x)] - 735*Log[Cos[(c + d*x)/2]]*Sin[ 
5*(c + d*x)] + 735*Log[Sin[(c + d*x)/2]]*Sin[5*(c + d*x)] - 210*Sin[6*(c + 
 d*x)] + 105*Log[Cos[(c + d*x)/2]]*Sin[7*(c + d*x)] - 105*Log[Sin[(c + d*x 
)/2]]*Sin[7*(c + d*x)]))/(a^2*d)
 

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.03, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3042, 3188, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^8(c+d x)}{(a \sin (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\tan (c+d x)^8 (a \sin (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 3188

\(\displaystyle \frac {\int \left (a^6 \csc ^8(c+d x)-2 a^6 \csc ^7(c+d x)-a^6 \csc ^6(c+d x)+4 a^6 \csc ^5(c+d x)-a^6 \csc ^4(c+d x)-2 a^6 \csc ^3(c+d x)+a^6 \csc ^2(c+d x)\right )dx}{a^8}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {a^6 \text {arctanh}(\cos (c+d x))}{8 d}-\frac {a^6 \cot ^7(c+d x)}{7 d}-\frac {2 a^6 \cot ^5(c+d x)}{5 d}+\frac {a^6 \cot (c+d x) \csc ^5(c+d x)}{3 d}-\frac {7 a^6 \cot (c+d x) \csc ^3(c+d x)}{12 d}+\frac {a^6 \cot (c+d x) \csc (c+d x)}{8 d}}{a^8}\)

Input:

Int[Cot[c + d*x]^8/(a + a*Sin[c + d*x])^2,x]
 

Output:

((a^6*ArcTanh[Cos[c + d*x]])/(8*d) - (2*a^6*Cot[c + d*x]^5)/(5*d) - (a^6*C 
ot[c + d*x]^7)/(7*d) + (a^6*Cot[c + d*x]*Csc[c + d*x])/(8*d) - (7*a^6*Cot[ 
c + d*x]*Csc[c + d*x]^3)/(12*d) + (a^6*Cot[c + d*x]*Csc[c + d*x]^5)/(3*d)) 
/a^8
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3188
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*tan[(e_.) + (f_.)*(x_)]^(p_ 
), x_Symbol] :> Simp[a^p   Int[ExpandIntegrand[Sin[e + f*x]^p*((a + b*Sin[e 
 + f*x])^(m - p/2)/(a - b*Sin[e + f*x])^(p/2)), x], x], x] /; FreeQ[{a, b, 
e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p/2] && (LtQ[p, 0] || GtQ[m 
- p/2, 0])
 
Maple [A] (verified)

Time = 5.93 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.63

method result size
derivativedivides \(\frac {\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{7}-\frac {2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{3}+\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{5}+2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+11 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}-\frac {2}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-\frac {3}{5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}-\frac {2}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}+\frac {2}{3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}-\frac {11}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-16 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {5}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}}{128 d \,a^{2}}\) \(202\)
default \(\frac {\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{7}-\frac {2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{3}+\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{5}+2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+11 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}-\frac {2}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}-\frac {3}{5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}-\frac {2}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}+\frac {2}{3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}-\frac {11}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-16 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {5}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}}{128 d \,a^{2}}\) \(202\)
risch \(-\frac {840 i {\mathrm e}^{12 i \left (d x +c \right )}+105 \,{\mathrm e}^{13 i \left (d x +c \right )}-3360 i {\mathrm e}^{10 i \left (d x +c \right )}+1540 \,{\mathrm e}^{11 i \left (d x +c \right )}+840 i {\mathrm e}^{8 i \left (d x +c \right )}+1085 \,{\mathrm e}^{9 i \left (d x +c \right )}-6720 i {\mathrm e}^{6 i \left (d x +c \right )}+1176 i {\mathrm e}^{4 i \left (d x +c \right )}-1085 \,{\mathrm e}^{5 i \left (d x +c \right )}-672 i {\mathrm e}^{2 i \left (d x +c \right )}-1540 \,{\mathrm e}^{3 i \left (d x +c \right )}+216 i-105 \,{\mathrm e}^{i \left (d x +c \right )}}{420 d \,a^{2} \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{7}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{8 d \,a^{2}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{8 d \,a^{2}}\) \(204\)

Input:

int(cot(d*x+c)^8/(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)
 

Output:

1/128/d/a^2*(1/7*tan(1/2*d*x+1/2*c)^7-2/3*tan(1/2*d*x+1/2*c)^6+3/5*tan(1/2 
*d*x+1/2*c)^5+2*tan(1/2*d*x+1/2*c)^4-5*tan(1/2*d*x+1/2*c)^3+2*tan(1/2*d*x+ 
1/2*c)^2+11*tan(1/2*d*x+1/2*c)-1/7/tan(1/2*d*x+1/2*c)^7-2/tan(1/2*d*x+1/2* 
c)^2-3/5/tan(1/2*d*x+1/2*c)^5-2/tan(1/2*d*x+1/2*c)^4+2/3/tan(1/2*d*x+1/2*c 
)^6-11/tan(1/2*d*x+1/2*c)-16*ln(tan(1/2*d*x+1/2*c))+5/tan(1/2*d*x+1/2*c)^3 
)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 216, normalized size of antiderivative = 1.74 \[ \int \frac {\cot ^8(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {432 \, \cos \left (d x + c\right )^{7} - 672 \, \cos \left (d x + c\right )^{5} - 105 \, {\left (\cos \left (d x + c\right )^{6} - 3 \, \cos \left (d x + c\right )^{4} + 3 \, \cos \left (d x + c\right )^{2} - 1\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) + 105 \, {\left (\cos \left (d x + c\right )^{6} - 3 \, \cos \left (d x + c\right )^{4} + 3 \, \cos \left (d x + c\right )^{2} - 1\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) + 70 \, {\left (3 \, \cos \left (d x + c\right )^{5} + 8 \, \cos \left (d x + c\right )^{3} - 3 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{1680 \, {\left (a^{2} d \cos \left (d x + c\right )^{6} - 3 \, a^{2} d \cos \left (d x + c\right )^{4} + 3 \, a^{2} d \cos \left (d x + c\right )^{2} - a^{2} d\right )} \sin \left (d x + c\right )} \] Input:

integrate(cot(d*x+c)^8/(a+a*sin(d*x+c))^2,x, algorithm="fricas")
 

Output:

-1/1680*(432*cos(d*x + c)^7 - 672*cos(d*x + c)^5 - 105*(cos(d*x + c)^6 - 3 
*cos(d*x + c)^4 + 3*cos(d*x + c)^2 - 1)*log(1/2*cos(d*x + c) + 1/2)*sin(d* 
x + c) + 105*(cos(d*x + c)^6 - 3*cos(d*x + c)^4 + 3*cos(d*x + c)^2 - 1)*lo 
g(-1/2*cos(d*x + c) + 1/2)*sin(d*x + c) + 70*(3*cos(d*x + c)^5 + 8*cos(d*x 
 + c)^3 - 3*cos(d*x + c))*sin(d*x + c))/((a^2*d*cos(d*x + c)^6 - 3*a^2*d*c 
os(d*x + c)^4 + 3*a^2*d*cos(d*x + c)^2 - a^2*d)*sin(d*x + c))
 

Sympy [F]

\[ \int \frac {\cot ^8(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\int \frac {\cot ^{8}{\left (c + d x \right )}}{\sin ^{2}{\left (c + d x \right )} + 2 \sin {\left (c + d x \right )} + 1}\, dx}{a^{2}} \] Input:

integrate(cot(d*x+c)**8/(a+a*sin(d*x+c))**2,x)
 

Output:

Integral(cot(c + d*x)**8/(sin(c + d*x)**2 + 2*sin(c + d*x) + 1), x)/a**2
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 314 vs. \(2 (112) = 224\).

Time = 0.04 (sec) , antiderivative size = 314, normalized size of antiderivative = 2.53 \[ \int \frac {\cot ^8(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\frac {\frac {1155 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {210 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {525 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {210 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {63 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {70 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac {15 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}}{a^{2}} - \frac {1680 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}} + \frac {{\left (\frac {70 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {63 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {210 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {525 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {210 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {1155 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} - 15\right )} {\left (\cos \left (d x + c\right ) + 1\right )}^{7}}{a^{2} \sin \left (d x + c\right )^{7}}}{13440 \, d} \] Input:

integrate(cot(d*x+c)^8/(a+a*sin(d*x+c))^2,x, algorithm="maxima")
 

Output:

1/13440*((1155*sin(d*x + c)/(cos(d*x + c) + 1) + 210*sin(d*x + c)^2/(cos(d 
*x + c) + 1)^2 - 525*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 210*sin(d*x + c 
)^4/(cos(d*x + c) + 1)^4 + 63*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 70*sin 
(d*x + c)^6/(cos(d*x + c) + 1)^6 + 15*sin(d*x + c)^7/(cos(d*x + c) + 1)^7) 
/a^2 - 1680*log(sin(d*x + c)/(cos(d*x + c) + 1))/a^2 + (70*sin(d*x + c)/(c 
os(d*x + c) + 1) - 63*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 210*sin(d*x + 
c)^3/(cos(d*x + c) + 1)^3 + 525*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - 210* 
sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 1155*sin(d*x + c)^6/(cos(d*x + c) + 
1)^6 - 15)*(cos(d*x + c) + 1)^7/(a^2*sin(d*x + c)^7))/d
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 245 vs. \(2 (112) = 224\).

Time = 0.18 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.98 \[ \int \frac {\cot ^8(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {\frac {1680 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a^{2}} - \frac {4356 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 1155 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 210 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 525 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 210 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 63 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 70 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 15}{a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7}} - \frac {15 \, a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 70 \, a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 63 \, a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 210 \, a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 525 \, a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 210 \, a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1155 \, a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{14}}}{13440 \, d} \] Input:

integrate(cot(d*x+c)^8/(a+a*sin(d*x+c))^2,x, algorithm="giac")
 

Output:

-1/13440*(1680*log(abs(tan(1/2*d*x + 1/2*c)))/a^2 - (4356*tan(1/2*d*x + 1/ 
2*c)^7 - 1155*tan(1/2*d*x + 1/2*c)^6 - 210*tan(1/2*d*x + 1/2*c)^5 + 525*ta 
n(1/2*d*x + 1/2*c)^4 - 210*tan(1/2*d*x + 1/2*c)^3 - 63*tan(1/2*d*x + 1/2*c 
)^2 + 70*tan(1/2*d*x + 1/2*c) - 15)/(a^2*tan(1/2*d*x + 1/2*c)^7) - (15*a^1 
2*tan(1/2*d*x + 1/2*c)^7 - 70*a^12*tan(1/2*d*x + 1/2*c)^6 + 63*a^12*tan(1/ 
2*d*x + 1/2*c)^5 + 210*a^12*tan(1/2*d*x + 1/2*c)^4 - 525*a^12*tan(1/2*d*x 
+ 1/2*c)^3 + 210*a^12*tan(1/2*d*x + 1/2*c)^2 + 1155*a^12*tan(1/2*d*x + 1/2 
*c))/a^14)/d
 

Mupad [B] (verification not implemented)

Time = 32.89 (sec) , antiderivative size = 387, normalized size of antiderivative = 3.12 \[ \int \frac {\cot ^8(c+d x)}{(a+a \sin (c+d x))^2} \, dx=-\frac {15\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{14}-15\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{14}+70\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{13}-70\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{13}\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )-63\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}-210\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}+525\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}-210\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9-1155\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+1155\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+210\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5-525\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+210\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+63\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1680\,\ln \left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{13440\,a^2\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7} \] Input:

int(cot(c + d*x)^8/(a + a*sin(c + d*x))^2,x)
 

Output:

-(15*cos(c/2 + (d*x)/2)^14 - 15*sin(c/2 + (d*x)/2)^14 + 70*cos(c/2 + (d*x) 
/2)*sin(c/2 + (d*x)/2)^13 - 70*cos(c/2 + (d*x)/2)^13*sin(c/2 + (d*x)/2) - 
63*cos(c/2 + (d*x)/2)^2*sin(c/2 + (d*x)/2)^12 - 210*cos(c/2 + (d*x)/2)^3*s 
in(c/2 + (d*x)/2)^11 + 525*cos(c/2 + (d*x)/2)^4*sin(c/2 + (d*x)/2)^10 - 21 
0*cos(c/2 + (d*x)/2)^5*sin(c/2 + (d*x)/2)^9 - 1155*cos(c/2 + (d*x)/2)^6*si 
n(c/2 + (d*x)/2)^8 + 1155*cos(c/2 + (d*x)/2)^8*sin(c/2 + (d*x)/2)^6 + 210* 
cos(c/2 + (d*x)/2)^9*sin(c/2 + (d*x)/2)^5 - 525*cos(c/2 + (d*x)/2)^10*sin( 
c/2 + (d*x)/2)^4 + 210*cos(c/2 + (d*x)/2)^11*sin(c/2 + (d*x)/2)^3 + 63*cos 
(c/2 + (d*x)/2)^12*sin(c/2 + (d*x)/2)^2 + 1680*log(sin(c/2 + (d*x)/2)/cos( 
c/2 + (d*x)/2))*cos(c/2 + (d*x)/2)^7*sin(c/2 + (d*x)/2)^7)/(13440*a^2*d*co 
s(c/2 + (d*x)/2)^7*sin(c/2 + (d*x)/2)^7)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.12 \[ \int \frac {\cot ^8(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {-216 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{6}+105 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{5}+312 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{4}-490 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3}+24 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2}+280 \cos \left (d x +c \right ) \sin \left (d x +c \right )-120 \cos \left (d x +c \right )-105 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{7}}{840 \sin \left (d x +c \right )^{7} a^{2} d} \] Input:

int(cot(d*x+c)^8/(a+a*sin(d*x+c))^2,x)
 

Output:

( - 216*cos(c + d*x)*sin(c + d*x)**6 + 105*cos(c + d*x)*sin(c + d*x)**5 + 
312*cos(c + d*x)*sin(c + d*x)**4 - 490*cos(c + d*x)*sin(c + d*x)**3 + 24*c 
os(c + d*x)*sin(c + d*x)**2 + 280*cos(c + d*x)*sin(c + d*x) - 120*cos(c + 
d*x) - 105*log(tan((c + d*x)/2))*sin(c + d*x)**7)/(840*sin(c + d*x)**7*a** 
2*d)