\(\int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx\) [796]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F(-1)]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 95 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\frac {5 a x}{2}-\frac {a \cos (c+d x)}{d}-\frac {2 a \sec (c+d x)}{d}+\frac {a \sec ^3(c+d x)}{3 d}-\frac {a \cos (c+d x) \sin (c+d x)}{2 d}-\frac {2 a \tan (c+d x)}{d}+\frac {a \tan ^3(c+d x)}{3 d} \] Output:

5/2*a*x-a*cos(d*x+c)/d-2*a*sec(d*x+c)/d+1/3*a*sec(d*x+c)^3/d-1/2*a*cos(d*x 
+c)*sin(d*x+c)/d-2*a*tan(d*x+c)/d+1/3*a*tan(d*x+c)^3/d
 

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.80 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\frac {a \left (30 c+30 d x-12 \cos (c+d x)-24 \sec (c+d x)+4 \sec ^3(c+d x)-3 \sin (2 (c+d x))-28 \tan (c+d x)+4 \sec ^2(c+d x) \tan (c+d x)\right )}{12 d} \] Input:

Integrate[Sin[c + d*x]*(a + a*Sin[c + d*x])*Tan[c + d*x]^4,x]
 

Output:

(a*(30*c + 30*d*x - 12*Cos[c + d*x] - 24*Sec[c + d*x] + 4*Sec[c + d*x]^3 - 
 3*Sin[2*(c + d*x)] - 28*Tan[c + d*x] + 4*Sec[c + d*x]^2*Tan[c + d*x]))/(1 
2*d)
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.01, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3317, 3042, 3070, 244, 2009, 3071, 252, 254, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sin (c+d x) \tan ^4(c+d x) (a \sin (c+d x)+a) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)^5 (a \sin (c+d x)+a)}{\cos (c+d x)^4}dx\)

\(\Big \downarrow \) 3317

\(\displaystyle a \int \sin ^2(c+d x) \tan ^4(c+d x)dx+a \int \sin (c+d x) \tan ^4(c+d x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a \int \sin (c+d x) \tan (c+d x)^4dx+a \int \sin (c+d x)^2 \tan (c+d x)^4dx\)

\(\Big \downarrow \) 3070

\(\displaystyle a \int \sin (c+d x)^2 \tan (c+d x)^4dx-\frac {a \int \left (1-\cos ^2(c+d x)\right )^2 \sec ^4(c+d x)d\cos (c+d x)}{d}\)

\(\Big \downarrow \) 244

\(\displaystyle a \int \sin (c+d x)^2 \tan (c+d x)^4dx-\frac {a \int \left (\sec ^4(c+d x)-2 \sec ^2(c+d x)+1\right )d\cos (c+d x)}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle a \int \sin (c+d x)^2 \tan (c+d x)^4dx-\frac {a \left (\cos (c+d x)-\frac {1}{3} \sec ^3(c+d x)+2 \sec (c+d x)\right )}{d}\)

\(\Big \downarrow \) 3071

\(\displaystyle \frac {a \int \frac {\tan ^6(c+d x)}{\left (\tan ^2(c+d x)+1\right )^2}d\tan (c+d x)}{d}-\frac {a \left (\cos (c+d x)-\frac {1}{3} \sec ^3(c+d x)+2 \sec (c+d x)\right )}{d}\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {a \left (\frac {5}{2} \int \frac {\tan ^4(c+d x)}{\tan ^2(c+d x)+1}d\tan (c+d x)-\frac {\tan ^5(c+d x)}{2 \left (\tan ^2(c+d x)+1\right )}\right )}{d}-\frac {a \left (\cos (c+d x)-\frac {1}{3} \sec ^3(c+d x)+2 \sec (c+d x)\right )}{d}\)

\(\Big \downarrow \) 254

\(\displaystyle \frac {a \left (\frac {5}{2} \int \left (\tan ^2(c+d x)+\frac {1}{\tan ^2(c+d x)+1}-1\right )d\tan (c+d x)-\frac {\tan ^5(c+d x)}{2 \left (\tan ^2(c+d x)+1\right )}\right )}{d}-\frac {a \left (\cos (c+d x)-\frac {1}{3} \sec ^3(c+d x)+2 \sec (c+d x)\right )}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {a \left (\frac {5}{2} \left (\arctan (\tan (c+d x))+\frac {1}{3} \tan ^3(c+d x)-\tan (c+d x)\right )-\frac {\tan ^5(c+d x)}{2 \left (\tan ^2(c+d x)+1\right )}\right )}{d}-\frac {a \left (\cos (c+d x)-\frac {1}{3} \sec ^3(c+d x)+2 \sec (c+d x)\right )}{d}\)

Input:

Int[Sin[c + d*x]*(a + a*Sin[c + d*x])*Tan[c + d*x]^4,x]
 

Output:

-((a*(Cos[c + d*x] + 2*Sec[c + d*x] - Sec[c + d*x]^3/3))/d) + (a*(-1/2*Tan 
[c + d*x]^5/(1 + Tan[c + d*x]^2) + (5*(ArcTan[Tan[c + d*x]] - Tan[c + d*x] 
 + Tan[c + d*x]^3/3))/2))/d
 

Defintions of rubi rules used

rule 244
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Expand 
Integrand[(c*x)^m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && IGtQ[p 
, 0]
 

rule 252
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x 
)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b* 
(p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c 
}, x] && LtQ[p, -1] && GtQ[m, 1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomi 
alQ[a, b, c, 2, m, p, x]
 

rule 254
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Int[PolynomialDivide[x^m, 
 a + b*x^2, x], x] /; FreeQ[{a, b}, x] && IGtQ[m, 3]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3070
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] 
:> Simp[-f^(-1)   Subst[Int[(1 - x^2)^((m + n - 1)/2)/x^n, x], x, Cos[e + f 
*x]], x] /; FreeQ[{e, f}, x] && IntegersQ[m, n, (m + n - 1)/2]
 

rule 3071
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_S 
ymbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[b*(ff/f)   Subst[I 
nt[(ff*x)^(m + n)/(b^2 + ff^2*x^2)^(m/2 + 1), x], x, b*(Tan[e + f*x]/ff)], 
x]] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2]
 

rule 3317
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[a   Int[(g*Co 
s[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Simp[b/d   Int[(g*Cos[e + f*x])^ 
p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.48 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.46

method result size
risch \(\frac {5 a x}{2}+\frac {i a \,{\mathrm e}^{2 i \left (d x +c \right )}}{8 d}-\frac {a \,{\mathrm e}^{i \left (d x +c \right )}}{2 d}-\frac {a \,{\mathrm e}^{-i \left (d x +c \right )}}{2 d}-\frac {i a \,{\mathrm e}^{-2 i \left (d x +c \right )}}{8 d}-\frac {2 a \left (-3 i {\mathrm e}^{2 i \left (d x +c \right )}+6 \,{\mathrm e}^{3 i \left (d x +c \right )}-7 i+8 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{3 \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{3} d}\) \(139\)
derivativedivides \(\frac {a \left (\frac {\sin \left (d x +c \right )^{7}}{3 \cos \left (d x +c \right )^{3}}-\frac {4 \sin \left (d x +c \right )^{7}}{3 \cos \left (d x +c \right )}-\frac {4 \left (\sin \left (d x +c \right )^{5}+\frac {5 \sin \left (d x +c \right )^{3}}{4}+\frac {15 \sin \left (d x +c \right )}{8}\right ) \cos \left (d x +c \right )}{3}+\frac {5 d x}{2}+\frac {5 c}{2}\right )+a \left (\frac {\sin \left (d x +c \right )^{6}}{3 \cos \left (d x +c \right )^{3}}-\frac {\sin \left (d x +c \right )^{6}}{\cos \left (d x +c \right )}-\left (\frac {8}{3}+\sin \left (d x +c \right )^{4}+\frac {4 \sin \left (d x +c \right )^{2}}{3}\right ) \cos \left (d x +c \right )\right )}{d}\) \(154\)
default \(\frac {a \left (\frac {\sin \left (d x +c \right )^{7}}{3 \cos \left (d x +c \right )^{3}}-\frac {4 \sin \left (d x +c \right )^{7}}{3 \cos \left (d x +c \right )}-\frac {4 \left (\sin \left (d x +c \right )^{5}+\frac {5 \sin \left (d x +c \right )^{3}}{4}+\frac {15 \sin \left (d x +c \right )}{8}\right ) \cos \left (d x +c \right )}{3}+\frac {5 d x}{2}+\frac {5 c}{2}\right )+a \left (\frac {\sin \left (d x +c \right )^{6}}{3 \cos \left (d x +c \right )^{3}}-\frac {\sin \left (d x +c \right )^{6}}{\cos \left (d x +c \right )}-\left (\frac {8}{3}+\sin \left (d x +c \right )^{4}+\frac {4 \sin \left (d x +c \right )^{2}}{3}\right ) \cos \left (d x +c \right )\right )}{d}\) \(154\)
parts \(\frac {a \left (\frac {\sin \left (d x +c \right )^{6}}{3 \cos \left (d x +c \right )^{3}}-\frac {\sin \left (d x +c \right )^{6}}{\cos \left (d x +c \right )}-\left (\frac {8}{3}+\sin \left (d x +c \right )^{4}+\frac {4 \sin \left (d x +c \right )^{2}}{3}\right ) \cos \left (d x +c \right )\right )}{d}+\frac {a \left (\frac {\sin \left (d x +c \right )^{7}}{3 \cos \left (d x +c \right )^{3}}-\frac {4 \sin \left (d x +c \right )^{7}}{3 \cos \left (d x +c \right )}-\frac {4 \left (\sin \left (d x +c \right )^{5}+\frac {5 \sin \left (d x +c \right )^{3}}{4}+\frac {15 \sin \left (d x +c \right )}{8}\right ) \cos \left (d x +c \right )}{3}+\frac {5 d x}{2}+\frac {5 c}{2}\right )}{d}\) \(156\)

Input:

int(sin(d*x+c)*(a+a*sin(d*x+c))*tan(d*x+c)^4,x,method=_RETURNVERBOSE)
 

Output:

5/2*a*x+1/8*I*a/d*exp(2*I*(d*x+c))-1/2*a/d*exp(I*(d*x+c))-1/2*a/d*exp(-I*( 
d*x+c))-1/8*I*a/d*exp(-2*I*(d*x+c))-2/3*a*(-3*I*exp(2*I*(d*x+c))+6*exp(3*I 
*(d*x+c))-7*I+8*exp(I*(d*x+c)))/(exp(I*(d*x+c))+I)/(exp(I*(d*x+c))-I)^3/d
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 98, normalized size of antiderivative = 1.03 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\frac {3 \, a \cos \left (d x + c\right )^{4} - 15 \, a d x \cos \left (d x + c\right ) + 17 \, a \cos \left (d x + c\right )^{2} + {\left (15 \, a d x \cos \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a\right )} \sin \left (d x + c\right ) - 4 \, a}{6 \, {\left (d \cos \left (d x + c\right ) \sin \left (d x + c\right ) - d \cos \left (d x + c\right )\right )}} \] Input:

integrate(sin(d*x+c)*(a+a*sin(d*x+c))*tan(d*x+c)^4,x, algorithm="fricas")
 

Output:

1/6*(3*a*cos(d*x + c)^4 - 15*a*d*x*cos(d*x + c) + 17*a*cos(d*x + c)^2 + (1 
5*a*d*x*cos(d*x + c) - 3*a*cos(d*x + c)^2 + 2*a)*sin(d*x + c) - 4*a)/(d*co 
s(d*x + c)*sin(d*x + c) - d*cos(d*x + c))
 

Sympy [F]

\[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=a \left (\int \sin {\left (c + d x \right )} \tan ^{4}{\left (c + d x \right )}\, dx + \int \sin ^{2}{\left (c + d x \right )} \tan ^{4}{\left (c + d x \right )}\, dx\right ) \] Input:

integrate(sin(d*x+c)*(a+a*sin(d*x+c))*tan(d*x+c)**4,x)
 

Output:

a*(Integral(sin(c + d*x)*tan(c + d*x)**4, x) + Integral(sin(c + d*x)**2*ta 
n(c + d*x)**4, x))
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.92 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\frac {{\left (2 \, \tan \left (d x + c\right )^{3} + 15 \, d x + 15 \, c - \frac {3 \, \tan \left (d x + c\right )}{\tan \left (d x + c\right )^{2} + 1} - 12 \, \tan \left (d x + c\right )\right )} a - 2 \, a {\left (\frac {6 \, \cos \left (d x + c\right )^{2} - 1}{\cos \left (d x + c\right )^{3}} + 3 \, \cos \left (d x + c\right )\right )}}{6 \, d} \] Input:

integrate(sin(d*x+c)*(a+a*sin(d*x+c))*tan(d*x+c)^4,x, algorithm="maxima")
 

Output:

1/6*((2*tan(d*x + c)^3 + 15*d*x + 15*c - 3*tan(d*x + c)/(tan(d*x + c)^2 + 
1) - 12*tan(d*x + c))*a - 2*a*((6*cos(d*x + c)^2 - 1)/cos(d*x + c)^3 + 3*c 
os(d*x + c)))/d
 

Giac [F(-1)]

Timed out. \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\text {Timed out} \] Input:

integrate(sin(d*x+c)*(a+a*sin(d*x+c))*tan(d*x+c)^4,x, algorithm="giac")
 

Output:

Timed out
 

Mupad [B] (verification not implemented)

Time = 35.50 (sec) , antiderivative size = 285, normalized size of antiderivative = 3.00 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\frac {5\,a\,x}{2}-\frac {\left (\frac {a\,\left (30\,c+30\,d\,x-30\right )}{6}-5\,a\,\left (c+d\,x\right )\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (5\,a\,\left (c+d\,x\right )-\frac {a\,\left (30\,c+30\,d\,x-60\right )}{6}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+\left (\frac {a\,\left (30\,c+30\,d\,x-50\right )}{6}-5\,a\,\left (c+d\,x\right )\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\frac {20\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{3}+\left (5\,a\,\left (c+d\,x\right )-\frac {a\,\left (30\,c+30\,d\,x-14\right )}{6}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (\frac {a\,\left (30\,c+30\,d\,x-4\right )}{6}-5\,a\,\left (c+d\,x\right )\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+\left (5\,a\,\left (c+d\,x\right )-\frac {a\,\left (30\,c+30\,d\,x-34\right )}{6}\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+\frac {a\,\left (15\,c+15\,d\,x-32\right )}{6}-\frac {5\,a\,\left (c+d\,x\right )}{2}}{d\,{\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )}^3\,\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )\,{\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}^2} \] Input:

int(sin(c + d*x)*tan(c + d*x)^4*(a + a*sin(c + d*x)),x)
 

Output:

(5*a*x)/2 - ((a*(15*c + 15*d*x - 32))/6 - tan(c/2 + (d*x)/2)*((a*(30*c + 3 
0*d*x - 34))/6 - 5*a*(c + d*x)) - (5*a*(c + d*x))/2 + tan(c/2 + (d*x)/2)^2 
*((a*(30*c + 30*d*x - 4))/6 - 5*a*(c + d*x)) - tan(c/2 + (d*x)/2)^3*((a*(3 
0*c + 30*d*x - 14))/6 - 5*a*(c + d*x)) + tan(c/2 + (d*x)/2)^7*((a*(30*c + 
30*d*x - 30))/6 - 5*a*(c + d*x)) + tan(c/2 + (d*x)/2)^5*((a*(30*c + 30*d*x 
 - 50))/6 - 5*a*(c + d*x)) - tan(c/2 + (d*x)/2)^6*((a*(30*c + 30*d*x - 60) 
)/6 - 5*a*(c + d*x)) + (20*a*tan(c/2 + (d*x)/2)^4)/3)/(d*(tan(c/2 + (d*x)/ 
2) - 1)^3*(tan(c/2 + (d*x)/2) + 1)*(tan(c/2 + (d*x)/2)^2 + 1)^2)
 

Reduce [B] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.41 \[ \int \sin (c+d x) (a+a \sin (c+d x)) \tan ^4(c+d x) \, dx=\frac {a \left (15 \cos \left (d x +c \right ) \sin \left (d x +c \right ) c +15 \cos \left (d x +c \right ) \sin \left (d x +c \right ) d x -\cos \left (d x +c \right ) \sin \left (d x +c \right )-15 \cos \left (d x +c \right ) c -15 \cos \left (d x +c \right ) d x +\cos \left (d x +c \right )+3 \sin \left (d x +c \right )^{4}+3 \sin \left (d x +c \right )^{3}-23 \sin \left (d x +c \right )^{2}-\sin \left (d x +c \right )+16\right )}{6 \cos \left (d x +c \right ) d \left (\sin \left (d x +c \right )-1\right )} \] Input:

int(sin(d*x+c)*(a+a*sin(d*x+c))*tan(d*x+c)^4,x)
 

Output:

(a*(15*cos(c + d*x)*sin(c + d*x)*c + 15*cos(c + d*x)*sin(c + d*x)*d*x - co 
s(c + d*x)*sin(c + d*x) - 15*cos(c + d*x)*c - 15*cos(c + d*x)*d*x + cos(c 
+ d*x) + 3*sin(c + d*x)**4 + 3*sin(c + d*x)**3 - 23*sin(c + d*x)**2 - sin( 
c + d*x) + 16))/(6*cos(c + d*x)*d*(sin(c + d*x) - 1))