\(\int \csc ^2(c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^3 \, dx\) [816]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 86 \[ \int \csc ^2(c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^3 \, dx=-\frac {3 a^3 \text {arctanh}(\cos (c+d x))}{d}-\frac {a^3 \cot (c+d x)}{d}+\frac {2 a^3 \cos (c+d x)}{3 d (1-\sin (c+d x))^2}+\frac {11 a^3 \cos (c+d x)}{3 d (1-\sin (c+d x))} \] Output:

-3*a^3*arctanh(cos(d*x+c))/d-a^3*cot(d*x+c)/d+2/3*a^3*cos(d*x+c)/d/(1-sin( 
d*x+c))^2+11/3*a^3*cos(d*x+c)/d/(1-sin(d*x+c))
 

Mathematica [A] (verified)

Time = 1.73 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.57 \[ \int \csc ^2(c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^3 \, dx=\frac {a^3 \left (-3 \cot \left (\frac {1}{2} (c+d x)\right )-18 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+18 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {4}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^2}+\frac {4 \sin \left (\frac {1}{2} (c+d x)\right ) (-13+11 \sin (c+d x))}{\left (-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^3}+3 \tan \left (\frac {1}{2} (c+d x)\right )\right )}{6 d} \] Input:

Integrate[Csc[c + d*x]^2*Sec[c + d*x]^4*(a + a*Sin[c + d*x])^3,x]
 

Output:

(a^3*(-3*Cot[(c + d*x)/2] - 18*Log[Cos[(c + d*x)/2]] + 18*Log[Sin[(c + d*x 
)/2]] + 4/(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^2 + (4*Sin[(c + d*x)/2]*(- 
13 + 11*Sin[c + d*x]))/(-Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3 + 3*Tan[(c 
 + d*x)/2]))/(6*d)
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.05, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {3042, 3351, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^2(c+d x) \sec ^4(c+d x) (a \sin (c+d x)+a)^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sin (c+d x)+a)^3}{\sin (c+d x)^2 \cos (c+d x)^4}dx\)

\(\Big \downarrow \) 3351

\(\displaystyle a^4 \int \left (\frac {\csc ^2(c+d x)}{a}+\frac {3 \csc (c+d x)}{a}+\frac {3}{a (1-\sin (c+d x))}+\frac {2}{a (1-\sin (c+d x))^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle a^4 \left (-\frac {3 \text {arctanh}(\cos (c+d x))}{a d}-\frac {\cot (c+d x)}{a d}+\frac {11 \cos (c+d x)}{3 a d (1-\sin (c+d x))}+\frac {2 \cos (c+d x)}{3 a d (1-\sin (c+d x))^2}\right )\)

Input:

Int[Csc[c + d*x]^2*Sec[c + d*x]^4*(a + a*Sin[c + d*x])^3,x]
 

Output:

a^4*((-3*ArcTanh[Cos[c + d*x]])/(a*d) - Cot[c + d*x]/(a*d) + (2*Cos[c + d* 
x])/(3*a*d*(1 - Sin[c + d*x])^2) + (11*Cos[c + d*x])/(3*a*d*(1 - Sin[c + d 
*x])))
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3351
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) 
 + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[1/a^p   Int[Expan 
dTrig[(d*sin[e + f*x])^n*(a - b*sin[e + f*x])^(p/2)*(a + b*sin[e + f*x])^(m 
 + p/2), x], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && In 
tegersQ[m, n, p/2] && ((GtQ[m, 0] && GtQ[p, 0] && LtQ[-m - p, n, -1]) || (G 
tQ[m, 2] && LtQ[p, 0] && GtQ[m + p/2, 0]))
 
Maple [A] (verified)

Time = 1.04 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.08

method result size
parallelrisch \(\frac {\left (6 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-27 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\cot \left (\frac {d x}{2}+\frac {c}{2}\right )+43 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {70}{3}\right ) a^{3}}{2 d \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}\) \(93\)
derivativedivides \(\frac {\frac {a^{3}}{3 \cos \left (d x +c \right )^{3}}-3 a^{3} \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+3 a^{3} \left (\frac {1}{3 \cos \left (d x +c \right )^{3}}+\frac {1}{\cos \left (d x +c \right )}+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )+a^{3} \left (\frac {1}{3 \sin \left (d x +c \right ) \cos \left (d x +c \right )^{3}}+\frac {4}{3 \sin \left (d x +c \right ) \cos \left (d x +c \right )}-\frac {8 \cot \left (d x +c \right )}{3}\right )}{d}\) \(131\)
default \(\frac {\frac {a^{3}}{3 \cos \left (d x +c \right )^{3}}-3 a^{3} \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+3 a^{3} \left (\frac {1}{3 \cos \left (d x +c \right )^{3}}+\frac {1}{\cos \left (d x +c \right )}+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )+a^{3} \left (\frac {1}{3 \sin \left (d x +c \right ) \cos \left (d x +c \right )^{3}}+\frac {4}{3 \sin \left (d x +c \right ) \cos \left (d x +c \right )}-\frac {8 \cot \left (d x +c \right )}{3}\right )}{d}\) \(131\)
risch \(\frac {-\frac {58 a^{3} {\mathrm e}^{2 i \left (d x +c \right )}}{3}-18 i a^{3} {\mathrm e}^{3 i \left (d x +c \right )}+\frac {28 a^{3}}{3}+22 i a^{3} {\mathrm e}^{i \left (d x +c \right )}+6 a^{3} {\mathrm e}^{4 i \left (d x +c \right )}}{\left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right ) \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{3} d}+\frac {3 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d}-\frac {3 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d}\) \(138\)
norman \(\frac {\frac {a^{3}}{2 d}-\frac {21 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{2 d}-\frac {133 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{6 d}-\frac {21 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{2 d}-\frac {14 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{d}-\frac {44 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{3 d}-\frac {21 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{2 d}-\frac {133 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{6 d}-\frac {14 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{d}-\frac {21 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}}{2 d}+\frac {a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{14}}{2 d}-\frac {4 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{d}-\frac {30 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{d}-\frac {26 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{3 d}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{3} \left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{3}}+\frac {3 a^{3} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}\) \(316\)

Input:

int(csc(d*x+c)^2*sec(d*x+c)^4*(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)
 

Output:

1/2*(6*(tan(1/2*d*x+1/2*c)-1)^3*ln(tan(1/2*d*x+1/2*c))+tan(1/2*d*x+1/2*c)^ 
4-27*tan(1/2*d*x+1/2*c)^2+cot(1/2*d*x+1/2*c)+43*tan(1/2*d*x+1/2*c)-70/3)*a 
^3/d/(tan(1/2*d*x+1/2*c)-1)^3
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 334 vs. \(2 (78) = 156\).

Time = 0.09 (sec) , antiderivative size = 334, normalized size of antiderivative = 3.88 \[ \int \csc ^2(c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^3 \, dx=\frac {28 \, a^{3} \cos \left (d x + c\right )^{3} - 10 \, a^{3} \cos \left (d x + c\right )^{2} - 34 \, a^{3} \cos \left (d x + c\right ) + 4 \, a^{3} - 9 \, {\left (a^{3} \cos \left (d x + c\right )^{3} + 2 \, a^{3} \cos \left (d x + c\right )^{2} - a^{3} \cos \left (d x + c\right ) - 2 \, a^{3} - {\left (a^{3} \cos \left (d x + c\right )^{2} - a^{3} \cos \left (d x + c\right ) - 2 \, a^{3}\right )} \sin \left (d x + c\right )\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 9 \, {\left (a^{3} \cos \left (d x + c\right )^{3} + 2 \, a^{3} \cos \left (d x + c\right )^{2} - a^{3} \cos \left (d x + c\right ) - 2 \, a^{3} - {\left (a^{3} \cos \left (d x + c\right )^{2} - a^{3} \cos \left (d x + c\right ) - 2 \, a^{3}\right )} \sin \left (d x + c\right )\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 2 \, {\left (14 \, a^{3} \cos \left (d x + c\right )^{2} + 19 \, a^{3} \cos \left (d x + c\right ) + 2 \, a^{3}\right )} \sin \left (d x + c\right )}{6 \, {\left (d \cos \left (d x + c\right )^{3} + 2 \, d \cos \left (d x + c\right )^{2} - d \cos \left (d x + c\right ) - {\left (d \cos \left (d x + c\right )^{2} - d \cos \left (d x + c\right ) - 2 \, d\right )} \sin \left (d x + c\right ) - 2 \, d\right )}} \] Input:

integrate(csc(d*x+c)^2*sec(d*x+c)^4*(a+a*sin(d*x+c))^3,x, algorithm="frica 
s")
 

Output:

1/6*(28*a^3*cos(d*x + c)^3 - 10*a^3*cos(d*x + c)^2 - 34*a^3*cos(d*x + c) + 
 4*a^3 - 9*(a^3*cos(d*x + c)^3 + 2*a^3*cos(d*x + c)^2 - a^3*cos(d*x + c) - 
 2*a^3 - (a^3*cos(d*x + c)^2 - a^3*cos(d*x + c) - 2*a^3)*sin(d*x + c))*log 
(1/2*cos(d*x + c) + 1/2) + 9*(a^3*cos(d*x + c)^3 + 2*a^3*cos(d*x + c)^2 - 
a^3*cos(d*x + c) - 2*a^3 - (a^3*cos(d*x + c)^2 - a^3*cos(d*x + c) - 2*a^3) 
*sin(d*x + c))*log(-1/2*cos(d*x + c) + 1/2) + 2*(14*a^3*cos(d*x + c)^2 + 1 
9*a^3*cos(d*x + c) + 2*a^3)*sin(d*x + c))/(d*cos(d*x + c)^3 + 2*d*cos(d*x 
+ c)^2 - d*cos(d*x + c) - (d*cos(d*x + c)^2 - d*cos(d*x + c) - 2*d)*sin(d* 
x + c) - 2*d)
 

Sympy [F(-1)]

Timed out. \[ \int \csc ^2(c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^3 \, dx=\text {Timed out} \] Input:

integrate(csc(d*x+c)**2*sec(d*x+c)**4*(a+a*sin(d*x+c))**3,x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.43 \[ \int \csc ^2(c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^3 \, dx=\frac {2 \, {\left (\tan \left (d x + c\right )^{3} - \frac {3}{\tan \left (d x + c\right )} + 6 \, \tan \left (d x + c\right )\right )} a^{3} + 6 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} a^{3} + 3 \, a^{3} {\left (\frac {2 \, {\left (3 \, \cos \left (d x + c\right )^{2} + 1\right )}}{\cos \left (d x + c\right )^{3}} - 3 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} + \frac {2 \, a^{3}}{\cos \left (d x + c\right )^{3}}}{6 \, d} \] Input:

integrate(csc(d*x+c)^2*sec(d*x+c)^4*(a+a*sin(d*x+c))^3,x, algorithm="maxim 
a")
 

Output:

1/6*(2*(tan(d*x + c)^3 - 3/tan(d*x + c) + 6*tan(d*x + c))*a^3 + 6*(tan(d*x 
 + c)^3 + 3*tan(d*x + c))*a^3 + 3*a^3*(2*(3*cos(d*x + c)^2 + 1)/cos(d*x + 
c)^3 - 3*log(cos(d*x + c) + 1) + 3*log(cos(d*x + c) - 1)) + 2*a^3/cos(d*x 
+ c)^3)/d
 

Giac [A] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.37 \[ \int \csc ^2(c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^3 \, dx=\frac {18 \, a^{3} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) + 3 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \frac {3 \, {\left (6 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + a^{3}\right )}}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )} - \frac {4 \, {\left (15 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 24 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 13 \, a^{3}\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{3}}}{6 \, d} \] Input:

integrate(csc(d*x+c)^2*sec(d*x+c)^4*(a+a*sin(d*x+c))^3,x, algorithm="giac" 
)
 

Output:

1/6*(18*a^3*log(abs(tan(1/2*d*x + 1/2*c))) + 3*a^3*tan(1/2*d*x + 1/2*c) - 
3*(6*a^3*tan(1/2*d*x + 1/2*c) + a^3)/tan(1/2*d*x + 1/2*c) - 4*(15*a^3*tan( 
1/2*d*x + 1/2*c)^2 - 24*a^3*tan(1/2*d*x + 1/2*c) + 13*a^3)/(tan(1/2*d*x + 
1/2*c) - 1)^3)/d
 

Mupad [B] (verification not implemented)

Time = 31.46 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.67 \[ \int \csc ^2(c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^3 \, dx=\frac {3\,a^3\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {-21\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+35\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-\frac {61\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{3}+a^3}{d\,\left (-2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3-6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}+\frac {a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,d} \] Input:

int((a + a*sin(c + d*x))^3/(cos(c + d*x)^4*sin(c + d*x)^2),x)
 

Output:

(3*a^3*log(tan(c/2 + (d*x)/2)))/d - (35*a^3*tan(c/2 + (d*x)/2)^2 - 21*a^3* 
tan(c/2 + (d*x)/2)^3 + a^3 - (61*a^3*tan(c/2 + (d*x)/2))/3)/(d*(2*tan(c/2 
+ (d*x)/2) - 6*tan(c/2 + (d*x)/2)^2 + 6*tan(c/2 + (d*x)/2)^3 - 2*tan(c/2 + 
 (d*x)/2)^4)) + (a^3*tan(c/2 + (d*x)/2))/(2*d)
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 200, normalized size of antiderivative = 2.33 \[ \int \csc ^2(c+d x) \sec ^4(c+d x) (a+a \sin (c+d x))^3 \, dx=\frac {a^{3} \left (18 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-54 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+54 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-18 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-27 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+48 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-43 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+3\right )}{6 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) d \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}-3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )} \] Input:

int(csc(d*x+c)^2*sec(d*x+c)^4*(a+a*sin(d*x+c))^3,x)
 

Output:

(a**3*(18*log(tan((c + d*x)/2))*tan((c + d*x)/2)**4 - 54*log(tan((c + d*x) 
/2))*tan((c + d*x)/2)**3 + 54*log(tan((c + d*x)/2))*tan((c + d*x)/2)**2 - 
18*log(tan((c + d*x)/2))*tan((c + d*x)/2) + 3*tan((c + d*x)/2)**5 - 27*tan 
((c + d*x)/2)**4 + 48*tan((c + d*x)/2)**2 - 43*tan((c + d*x)/2) + 3))/(6*t 
an((c + d*x)/2)*d*(tan((c + d*x)/2)**3 - 3*tan((c + d*x)/2)**2 + 3*tan((c 
+ d*x)/2) - 1))