\(\int \frac {\sin ^2(c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx\) [830]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 140 \[ \int \frac {\sin ^2(c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {x}{a^2}+\frac {2 \sec (c+d x)}{a^2 d}-\frac {2 \sec ^3(c+d x)}{a^2 d}+\frac {6 \sec ^5(c+d x)}{5 a^2 d}-\frac {2 \sec ^7(c+d x)}{7 a^2 d}-\frac {\tan (c+d x)}{a^2 d}+\frac {\tan ^3(c+d x)}{3 a^2 d}-\frac {\tan ^5(c+d x)}{5 a^2 d}+\frac {2 \tan ^7(c+d x)}{7 a^2 d} \] Output:

x/a^2+2*sec(d*x+c)/a^2/d-2*sec(d*x+c)^3/a^2/d+6/5*sec(d*x+c)^5/a^2/d-2/7*s 
ec(d*x+c)^7/a^2/d-tan(d*x+c)/a^2/d+1/3*tan(d*x+c)^3/a^2/d-1/5*tan(d*x+c)^5 
/a^2/d+2/7*tan(d*x+c)^7/a^2/d
 

Mathematica [A] (verified)

Time = 1.95 (sec) , antiderivative size = 257, normalized size of antiderivative = 1.84 \[ \int \frac {\sin ^2(c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {4032+42 (-381+280 c+280 d x) \cos (c+d x)+5504 \cos (2 (c+d x))-3429 \cos (3 (c+d x))+2520 c \cos (3 (c+d x))+2520 d x \cos (3 (c+d x))+2752 \cos (4 (c+d x))+1143 \cos (5 (c+d x))-840 c \cos (5 (c+d x))-840 d x \cos (5 (c+d x))+2128 \sin (c+d x)-9144 \sin (2 (c+d x))+6720 c \sin (2 (c+d x))+6720 d x \sin (2 (c+d x))+456 \sin (3 (c+d x))-4572 \sin (4 (c+d x))+3360 c \sin (4 (c+d x))+3360 d x \sin (4 (c+d x))+1528 \sin (5 (c+d x))}{13440 a^2 d \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^3 \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^7} \] Input:

Integrate[(Sin[c + d*x]^2*Tan[c + d*x]^4)/(a + a*Sin[c + d*x])^2,x]
 

Output:

(4032 + 42*(-381 + 280*c + 280*d*x)*Cos[c + d*x] + 5504*Cos[2*(c + d*x)] - 
 3429*Cos[3*(c + d*x)] + 2520*c*Cos[3*(c + d*x)] + 2520*d*x*Cos[3*(c + d*x 
)] + 2752*Cos[4*(c + d*x)] + 1143*Cos[5*(c + d*x)] - 840*c*Cos[5*(c + d*x) 
] - 840*d*x*Cos[5*(c + d*x)] + 2128*Sin[c + d*x] - 9144*Sin[2*(c + d*x)] + 
 6720*c*Sin[2*(c + d*x)] + 6720*d*x*Sin[2*(c + d*x)] + 456*Sin[3*(c + d*x) 
] - 4572*Sin[4*(c + d*x)] + 3360*c*Sin[4*(c + d*x)] + 3360*d*x*Sin[4*(c + 
d*x)] + 1528*Sin[5*(c + d*x)])/(13440*a^2*d*(Cos[(c + d*x)/2] - Sin[(c + d 
*x)/2])^3*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^7)
 

Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.03, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {3042, 3354, 3042, 3352, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^2(c+d x) \tan ^4(c+d x)}{(a \sin (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)^6}{\cos (c+d x)^4 (a \sin (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 3354

\(\displaystyle \frac {\int \sec ^2(c+d x) (a-a \sin (c+d x))^2 \tan ^6(c+d x)dx}{a^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sin (c+d x)^6 (a-a \sin (c+d x))^2}{\cos (c+d x)^8}dx}{a^4}\)

\(\Big \downarrow \) 3352

\(\displaystyle \frac {\int \left (a^2 \tan ^8(c+d x)-2 a^2 \sec (c+d x) \tan ^7(c+d x)+a^2 \sec ^2(c+d x) \tan ^6(c+d x)\right )dx}{a^4}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {2 a^2 \tan ^7(c+d x)}{7 d}-\frac {a^2 \tan ^5(c+d x)}{5 d}+\frac {a^2 \tan ^3(c+d x)}{3 d}-\frac {a^2 \tan (c+d x)}{d}-\frac {2 a^2 \sec ^7(c+d x)}{7 d}+\frac {6 a^2 \sec ^5(c+d x)}{5 d}-\frac {2 a^2 \sec ^3(c+d x)}{d}+\frac {2 a^2 \sec (c+d x)}{d}+a^2 x}{a^4}\)

Input:

Int[(Sin[c + d*x]^2*Tan[c + d*x]^4)/(a + a*Sin[c + d*x])^2,x]
 

Output:

(a^2*x + (2*a^2*Sec[c + d*x])/d - (2*a^2*Sec[c + d*x]^3)/d + (6*a^2*Sec[c 
+ d*x]^5)/(5*d) - (2*a^2*Sec[c + d*x]^7)/(7*d) - (a^2*Tan[c + d*x])/d + (a 
^2*Tan[c + d*x]^3)/(3*d) - (a^2*Tan[c + d*x]^5)/(5*d) + (2*a^2*Tan[c + d*x 
]^7)/(7*d))/a^4
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3352
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Int[ExpandTrig 
[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x] /; F 
reeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]
 

rule 3354
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(a/g)^(2* 
m)   Int[(g*Cos[e + f*x])^(2*m + p)*((d*Sin[e + f*x])^n/(a - b*Sin[e + f*x] 
)^m), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && 
ILtQ[m, 0]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.56 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.06

method result size
risch \(\frac {x}{a^{2}}+\frac {-\frac {48 \,{\mathrm e}^{5 i \left (d x +c \right )}}{5}+28 i {\mathrm e}^{6 i \left (d x +c \right )}+\frac {344 i {\mathrm e}^{4 i \left (d x +c \right )}}{15}+8 \,{\mathrm e}^{7 i \left (d x +c \right )}-\frac {2216 \,{\mathrm e}^{3 i \left (d x +c \right )}}{105}+6 i {\mathrm e}^{8 i \left (d x +c \right )}+4 \,{\mathrm e}^{9 i \left (d x +c \right )}+\frac {172 i {\mathrm e}^{2 i \left (d x +c \right )}}{35}-\frac {1108 \,{\mathrm e}^{i \left (d x +c \right )}}{105}-\frac {382 i}{105}}{\left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{3} \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{7} d \,a^{2}}\) \(149\)
derivativedivides \(\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {4}{7 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{7}}+\frac {2}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{6}}-\frac {8}{5 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}-\frac {1}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}+\frac {5}{12 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}+\frac {11}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {13}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {1}{12 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {1}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {3}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}}{d \,a^{2}}\) \(172\)
default \(\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {4}{7 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{7}}+\frac {2}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{6}}-\frac {8}{5 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}-\frac {1}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}+\frac {5}{12 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}+\frac {11}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {13}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {1}{12 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {1}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {3}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}}{d \,a^{2}}\) \(172\)

Input:

int(sin(d*x+c)^2*tan(d*x+c)^4/(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)
 

Output:

x/a^2+2/105*(-504*exp(5*I*(d*x+c))+1470*I*exp(6*I*(d*x+c))+1204*I*exp(4*I* 
(d*x+c))+420*exp(7*I*(d*x+c))-1108*exp(3*I*(d*x+c))+315*I*exp(8*I*(d*x+c)) 
+210*exp(9*I*(d*x+c))+258*I*exp(2*I*(d*x+c))-554*exp(I*(d*x+c))-191*I)/(ex 
p(I*(d*x+c))-I)^3/(exp(I*(d*x+c))+I)^7/d/a^2
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.00 \[ \int \frac {\sin ^2(c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {105 \, d x \cos \left (d x + c\right )^{5} - 210 \, d x \cos \left (d x + c\right )^{3} - 172 \, \cos \left (d x + c\right )^{4} + 86 \, \cos \left (d x + c\right )^{2} - {\left (210 \, d x \cos \left (d x + c\right )^{3} + 191 \, \cos \left (d x + c\right )^{4} - 129 \, \cos \left (d x + c\right )^{2} + 25\right )} \sin \left (d x + c\right ) - 10}{105 \, {\left (a^{2} d \cos \left (d x + c\right )^{5} - 2 \, a^{2} d \cos \left (d x + c\right )^{3} \sin \left (d x + c\right ) - 2 \, a^{2} d \cos \left (d x + c\right )^{3}\right )}} \] Input:

integrate(sin(d*x+c)^2*tan(d*x+c)^4/(a+a*sin(d*x+c))^2,x, algorithm="frica 
s")
 

Output:

1/105*(105*d*x*cos(d*x + c)^5 - 210*d*x*cos(d*x + c)^3 - 172*cos(d*x + c)^ 
4 + 86*cos(d*x + c)^2 - (210*d*x*cos(d*x + c)^3 + 191*cos(d*x + c)^4 - 129 
*cos(d*x + c)^2 + 25)*sin(d*x + c) - 10)/(a^2*d*cos(d*x + c)^5 - 2*a^2*d*c 
os(d*x + c)^3*sin(d*x + c) - 2*a^2*d*cos(d*x + c)^3)
 

Sympy [F]

\[ \int \frac {\sin ^2(c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\int \frac {\sin ^{2}{\left (c + d x \right )} \tan ^{4}{\left (c + d x \right )}}{\sin ^{2}{\left (c + d x \right )} + 2 \sin {\left (c + d x \right )} + 1}\, dx}{a^{2}} \] Input:

integrate(sin(d*x+c)**2*tan(d*x+c)**4/(a+a*sin(d*x+c))**2,x)
 

Output:

Integral(sin(c + d*x)**2*tan(c + d*x)**4/(sin(c + d*x)**2 + 2*sin(c + d*x) 
 + 1), x)/a**2
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 421 vs. \(2 (130) = 260\).

Time = 0.12 (sec) , antiderivative size = 421, normalized size of antiderivative = 3.01 \[ \int \frac {\sin ^2(c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {2 \, {\left (\frac {\frac {279 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {132 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {1048 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {364 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {1554 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {980 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} - \frac {280 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - \frac {420 \, \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} - \frac {105 \, \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}} + 96}{a^{2} + \frac {4 \, a^{2} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {3 \, a^{2} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {8 \, a^{2} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {14 \, a^{2} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {14 \, a^{2} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac {8 \, a^{2} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - \frac {3 \, a^{2} \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} - \frac {4 \, a^{2} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}} - \frac {a^{2} \sin \left (d x + c\right )^{10}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{10}}} + \frac {105 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}}\right )}}{105 \, d} \] Input:

integrate(sin(d*x+c)^2*tan(d*x+c)^4/(a+a*sin(d*x+c))^2,x, algorithm="maxim 
a")
 

Output:

2/105*((279*sin(d*x + c)/(cos(d*x + c) + 1) - 132*sin(d*x + c)^2/(cos(d*x 
+ c) + 1)^2 - 1048*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 364*sin(d*x + c)^ 
4/(cos(d*x + c) + 1)^4 + 1554*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 + 980*si 
n(d*x + c)^6/(cos(d*x + c) + 1)^6 - 280*sin(d*x + c)^7/(cos(d*x + c) + 1)^ 
7 - 420*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 - 105*sin(d*x + c)^9/(cos(d*x 
+ c) + 1)^9 + 96)/(a^2 + 4*a^2*sin(d*x + c)/(cos(d*x + c) + 1) + 3*a^2*sin 
(d*x + c)^2/(cos(d*x + c) + 1)^2 - 8*a^2*sin(d*x + c)^3/(cos(d*x + c) + 1) 
^3 - 14*a^2*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 14*a^2*sin(d*x + c)^6/(c 
os(d*x + c) + 1)^6 + 8*a^2*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 - 3*a^2*sin 
(d*x + c)^8/(cos(d*x + c) + 1)^8 - 4*a^2*sin(d*x + c)^9/(cos(d*x + c) + 1) 
^9 - a^2*sin(d*x + c)^10/(cos(d*x + c) + 1)^10) + 105*arctan(sin(d*x + c)/ 
(cos(d*x + c) + 1))/a^2)/d
 

Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.11 \[ \int \frac {\sin ^2(c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {\frac {840 \, {\left (d x + c\right )}}{a^{2}} + \frac {35 \, {\left (9 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 21 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 10\right )}}{a^{2} {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{3}} + \frac {1365 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 9345 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 26600 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 39410 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 30261 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 11837 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1886}{a^{2} {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}^{7}}}{840 \, d} \] Input:

integrate(sin(d*x+c)^2*tan(d*x+c)^4/(a+a*sin(d*x+c))^2,x, algorithm="giac" 
)
 

Output:

1/840*(840*(d*x + c)/a^2 + 35*(9*tan(1/2*d*x + 1/2*c)^2 - 21*tan(1/2*d*x + 
 1/2*c) + 10)/(a^2*(tan(1/2*d*x + 1/2*c) - 1)^3) + (1365*tan(1/2*d*x + 1/2 
*c)^6 + 9345*tan(1/2*d*x + 1/2*c)^5 + 26600*tan(1/2*d*x + 1/2*c)^4 + 39410 
*tan(1/2*d*x + 1/2*c)^3 + 30261*tan(1/2*d*x + 1/2*c)^2 + 11837*tan(1/2*d*x 
 + 1/2*c) + 1886)/(a^2*(tan(1/2*d*x + 1/2*c) + 1)^7))/d
 

Mupad [B] (verification not implemented)

Time = 37.28 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.11 \[ \int \frac {\sin ^2(c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {x}{a^2}+\frac {2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+8\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+\frac {16\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{3}-\frac {56\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{3}-\frac {148\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{5}+\frac {104\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{15}+\frac {2096\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{105}+\frac {88\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{35}-\frac {186\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{35}-\frac {64}{35}}{a^2\,d\,{\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )}^3\,{\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}^7} \] Input:

int((sin(c + d*x)^2*tan(c + d*x)^4)/(a + a*sin(c + d*x))^2,x)
 

Output:

x/a^2 + ((88*tan(c/2 + (d*x)/2)^2)/35 - (186*tan(c/2 + (d*x)/2))/35 + (209 
6*tan(c/2 + (d*x)/2)^3)/105 + (104*tan(c/2 + (d*x)/2)^4)/15 - (148*tan(c/2 
 + (d*x)/2)^5)/5 - (56*tan(c/2 + (d*x)/2)^6)/3 + (16*tan(c/2 + (d*x)/2)^7) 
/3 + 8*tan(c/2 + (d*x)/2)^8 + 2*tan(c/2 + (d*x)/2)^9 - 64/35)/(a^2*d*(tan( 
c/2 + (d*x)/2) - 1)^3*(tan(c/2 + (d*x)/2) + 1)^7)
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 376, normalized size of antiderivative = 2.69 \[ \int \frac {\sin ^2(c+d x) \tan ^4(c+d x)}{(a+a \sin (c+d x))^2} \, dx=\frac {35 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{4} \tan \left (d x +c \right )^{3}-105 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{4} \tan \left (d x +c \right )+105 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{4} d x +96 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{4}+70 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3} \tan \left (d x +c \right )^{3}-210 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3} \tan \left (d x +c \right )+210 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3} d x +192 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3}-70 \cos \left (d x +c \right ) \sin \left (d x +c \right ) \tan \left (d x +c \right )^{3}+210 \cos \left (d x +c \right ) \sin \left (d x +c \right ) \tan \left (d x +c \right )-210 \cos \left (d x +c \right ) \sin \left (d x +c \right ) d x -192 \cos \left (d x +c \right ) \sin \left (d x +c \right )-35 \cos \left (d x +c \right ) \tan \left (d x +c \right )^{3}+105 \cos \left (d x +c \right ) \tan \left (d x +c \right )-105 \cos \left (d x +c \right ) d x -96 \cos \left (d x +c \right )-51 \sin \left (d x +c \right )^{5}+108 \sin \left (d x +c \right )^{4}+288 \sin \left (d x +c \right )^{3}+48 \sin \left (d x +c \right )^{2}-192 \sin \left (d x +c \right )-96}{105 \cos \left (d x +c \right ) a^{2} d \left (\sin \left (d x +c \right )^{4}+2 \sin \left (d x +c \right )^{3}-2 \sin \left (d x +c \right )-1\right )} \] Input:

int(sin(d*x+c)^2*tan(d*x+c)^4/(a+a*sin(d*x+c))^2,x)
 

Output:

(35*cos(c + d*x)*sin(c + d*x)**4*tan(c + d*x)**3 - 105*cos(c + d*x)*sin(c 
+ d*x)**4*tan(c + d*x) + 105*cos(c + d*x)*sin(c + d*x)**4*d*x + 96*cos(c + 
 d*x)*sin(c + d*x)**4 + 70*cos(c + d*x)*sin(c + d*x)**3*tan(c + d*x)**3 - 
210*cos(c + d*x)*sin(c + d*x)**3*tan(c + d*x) + 210*cos(c + d*x)*sin(c + d 
*x)**3*d*x + 192*cos(c + d*x)*sin(c + d*x)**3 - 70*cos(c + d*x)*sin(c + d* 
x)*tan(c + d*x)**3 + 210*cos(c + d*x)*sin(c + d*x)*tan(c + d*x) - 210*cos( 
c + d*x)*sin(c + d*x)*d*x - 192*cos(c + d*x)*sin(c + d*x) - 35*cos(c + d*x 
)*tan(c + d*x)**3 + 105*cos(c + d*x)*tan(c + d*x) - 105*cos(c + d*x)*d*x - 
 96*cos(c + d*x) - 51*sin(c + d*x)**5 + 108*sin(c + d*x)**4 + 288*sin(c + 
d*x)**3 + 48*sin(c + d*x)**2 - 192*sin(c + d*x) - 96)/(105*cos(c + d*x)*a* 
*2*d*(sin(c + d*x)**4 + 2*sin(c + d*x)**3 - 2*sin(c + d*x) - 1))