\(\int \frac {\csc ^2(c+d x) \sec ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx\) [847]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 200 \[ \int \frac {\csc ^2(c+d x) \sec ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {3 \text {arctanh}(\cos (c+d x))}{a^3 d}-\frac {\cot (c+d x)}{a^3 d}-\frac {3 \sec (c+d x)}{a^3 d}-\frac {\sec ^3(c+d x)}{a^3 d}-\frac {3 \sec ^5(c+d x)}{5 a^3 d}-\frac {3 \sec ^7(c+d x)}{7 a^3 d}-\frac {4 \sec ^9(c+d x)}{9 a^3 d}+\frac {8 \tan (c+d x)}{a^3 d}+\frac {22 \tan ^3(c+d x)}{3 a^3 d}+\frac {28 \tan ^5(c+d x)}{5 a^3 d}+\frac {17 \tan ^7(c+d x)}{7 a^3 d}+\frac {4 \tan ^9(c+d x)}{9 a^3 d} \] Output:

3*arctanh(cos(d*x+c))/a^3/d-cot(d*x+c)/a^3/d-3*sec(d*x+c)/a^3/d-sec(d*x+c) 
^3/a^3/d-3/5*sec(d*x+c)^5/a^3/d-3/7*sec(d*x+c)^7/a^3/d-4/9*sec(d*x+c)^9/a^ 
3/d+8*tan(d*x+c)/a^3/d+22/3*tan(d*x+c)^3/a^3/d+28/5*tan(d*x+c)^5/a^3/d+17/ 
7*tan(d*x+c)^7/a^3/d+4/9*tan(d*x+c)^9/a^3/d
 

Mathematica [A] (verified)

Time = 2.04 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.15 \[ \int \frac {\csc ^2(c+d x) \sec ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {1935360 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-1935360 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {\csc (c+d x) (-590976+1083321 \cos (c+d x)-653248 \cos (2 (c+d x))-601845 \cos (3 (c+d x))+340096 \cos (4 (c+d x))-521599 \cos (5 (c+d x))+259008 \cos (6 (c+d x))+40123 \cos (7 (c+d x))-707328 \sin (c+d x)+1364182 \sin (2 (c+d x))-1161600 \sin (3 (c+d x))+320984 \sin (4 (c+d x))-329344 \sin (5 (c+d x))-240738 \sin (6 (c+d x))+53248 \sin (7 (c+d x)))}{\left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^3 \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^9}}{645120 a^3 d} \] Input:

Integrate[(Csc[c + d*x]^2*Sec[c + d*x]^4)/(a + a*Sin[c + d*x])^3,x]
 

Output:

(1935360*Log[Cos[(c + d*x)/2]] - 1935360*Log[Sin[(c + d*x)/2]] + (Csc[c + 
d*x]*(-590976 + 1083321*Cos[c + d*x] - 653248*Cos[2*(c + d*x)] - 601845*Co 
s[3*(c + d*x)] + 340096*Cos[4*(c + d*x)] - 521599*Cos[5*(c + d*x)] + 25900 
8*Cos[6*(c + d*x)] + 40123*Cos[7*(c + d*x)] - 707328*Sin[c + d*x] + 136418 
2*Sin[2*(c + d*x)] - 1161600*Sin[3*(c + d*x)] + 320984*Sin[4*(c + d*x)] - 
329344*Sin[5*(c + d*x)] - 240738*Sin[6*(c + d*x)] + 53248*Sin[7*(c + d*x)] 
))/((Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^3*(Cos[(c + d*x)/2] + Sin[(c + d 
*x)/2])^9))/(645120*a^3*d)
 

Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.02, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {3042, 3354, 3042, 3352, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\csc ^2(c+d x) \sec ^4(c+d x)}{(a \sin (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (c+d x)^2 \cos (c+d x)^4 (a \sin (c+d x)+a)^3}dx\)

\(\Big \downarrow \) 3354

\(\displaystyle \frac {\int \csc ^2(c+d x) \sec ^{10}(c+d x) (a-a \sin (c+d x))^3dx}{a^6}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {(a-a \sin (c+d x))^3}{\cos (c+d x)^{10} \sin (c+d x)^2}dx}{a^6}\)

\(\Big \downarrow \) 3352

\(\displaystyle \frac {\int \left (3 a^3 \sec ^{10}(c+d x)+a^3 \csc ^2(c+d x) \sec ^{10}(c+d x)-3 a^3 \csc (c+d x) \sec ^{10}(c+d x)-a^3 \tan (c+d x) \sec ^9(c+d x)\right )dx}{a^6}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {3 a^3 \text {arctanh}(\cos (c+d x))}{d}+\frac {4 a^3 \tan ^9(c+d x)}{9 d}+\frac {17 a^3 \tan ^7(c+d x)}{7 d}+\frac {28 a^3 \tan ^5(c+d x)}{5 d}+\frac {22 a^3 \tan ^3(c+d x)}{3 d}+\frac {8 a^3 \tan (c+d x)}{d}-\frac {a^3 \cot (c+d x)}{d}-\frac {4 a^3 \sec ^9(c+d x)}{9 d}-\frac {3 a^3 \sec ^7(c+d x)}{7 d}-\frac {3 a^3 \sec ^5(c+d x)}{5 d}-\frac {a^3 \sec ^3(c+d x)}{d}-\frac {3 a^3 \sec (c+d x)}{d}}{a^6}\)

Input:

Int[(Csc[c + d*x]^2*Sec[c + d*x]^4)/(a + a*Sin[c + d*x])^3,x]
 

Output:

((3*a^3*ArcTanh[Cos[c + d*x]])/d - (a^3*Cot[c + d*x])/d - (3*a^3*Sec[c + d 
*x])/d - (a^3*Sec[c + d*x]^3)/d - (3*a^3*Sec[c + d*x]^5)/(5*d) - (3*a^3*Se 
c[c + d*x]^7)/(7*d) - (4*a^3*Sec[c + d*x]^9)/(9*d) + (8*a^3*Tan[c + d*x])/ 
d + (22*a^3*Tan[c + d*x]^3)/(3*d) + (28*a^3*Tan[c + d*x]^5)/(5*d) + (17*a^ 
3*Tan[c + d*x]^7)/(7*d) + (4*a^3*Tan[c + d*x]^9)/(9*d))/a^6
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3352
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Int[ExpandTrig 
[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x] /; F 
reeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]
 

rule 3354
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(a/g)^(2* 
m)   Int[(g*Cos[e + f*x])^(2*m + p)*((d*Sin[e + f*x])^n/(a - b*Sin[e + f*x] 
)^m), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && 
ILtQ[m, 0]
 
Maple [A] (verified)

Time = 2.12 (sec) , antiderivative size = 224, normalized size of antiderivative = 1.12

method result size
derivativedivides \(\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-6 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {1}{12 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {1}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {11}{16 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {16}{9 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{9}}+\frac {8}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{8}}-\frac {152}{7 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{7}}+\frac {116}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{6}}-\frac {267}{5 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}+\frac {111}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}-\frac {50}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}+\frac {67}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {501}{16 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{2 d \,a^{3}}\) \(224\)
default \(\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-6 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {1}{12 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {1}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {11}{16 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}-\frac {16}{9 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{9}}+\frac {8}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{8}}-\frac {152}{7 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{7}}+\frac {116}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{6}}-\frac {267}{5 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}+\frac {111}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}-\frac {50}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}+\frac {67}{2 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {501}{16 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{2 d \,a^{3}}\) \(224\)
parallelrisch \(\frac {-1890 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{9} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+315 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{13}-17955 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}-64260 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}-63105 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}+84420 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+225729 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+104664 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-158607 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-203832 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-41753 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+63852 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+315 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )+46101 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+10676}{630 d \,a^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{9}}\) \(240\)
risch \(-\frac {2 \left (-1664 i-9039 \,{\mathrm e}^{i \left (d x +c \right )}+945 \,{\mathrm e}^{13 i \left (d x +c \right )}+15962 i {\mathrm e}^{2 i \left (d x +c \right )}-11970 \,{\mathrm e}^{11 i \left (d x +c \right )}-18081 \,{\mathrm e}^{9 i \left (d x +c \right )}-5670 i {\mathrm e}^{10 i \left (d x +c \right )}+1342 \,{\mathrm e}^{3 i \left (d x +c \right )}+5670 i {\mathrm e}^{12 i \left (d x +c \right )}-11412 i {\mathrm e}^{6 i \left (d x +c \right )}+30630 i {\mathrm e}^{4 i \left (d x +c \right )}-33516 i {\mathrm e}^{8 i \left (d x +c \right )}+18468 \,{\mathrm e}^{7 i \left (d x +c \right )}+38495 \,{\mathrm e}^{5 i \left (d x +c \right )}\right )}{315 \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right ) \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{9} \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{3} a^{3} d}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d \,a^{3}}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d \,a^{3}}\) \(243\)
norman \(\frac {\frac {1}{2 a d}+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{14}}{2 a d}+\frac {2492 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{15 d a}-\frac {102 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{a d}-\frac {57 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}}{2 a d}-\frac {601 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{6 a d}+\frac {134 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{d a}+\frac {5338 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{315 d a}+\frac {3583 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{10 d a}+\frac {10642 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{105 d a}-\frac {11324 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{35 d a}+\frac {15367 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{210 d a}-\frac {41753 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{630 d a}-\frac {17623 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{70 d a}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{9} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {3 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \,a^{3}}\) \(315\)

Input:

int(csc(d*x+c)^2*sec(d*x+c)^4/(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)
 

Output:

1/2/d/a^3*(tan(1/2*d*x+1/2*c)-1/tan(1/2*d*x+1/2*c)-6*ln(tan(1/2*d*x+1/2*c) 
)-1/12/(tan(1/2*d*x+1/2*c)-1)^3-1/8/(tan(1/2*d*x+1/2*c)-1)^2-11/16/(tan(1/ 
2*d*x+1/2*c)-1)-16/9/(tan(1/2*d*x+1/2*c)+1)^9+8/(tan(1/2*d*x+1/2*c)+1)^8-1 
52/7/(tan(1/2*d*x+1/2*c)+1)^7+116/3/(tan(1/2*d*x+1/2*c)+1)^6-267/5/(tan(1/ 
2*d*x+1/2*c)+1)^5+111/2/(tan(1/2*d*x+1/2*c)+1)^4-50/(tan(1/2*d*x+1/2*c)+1) 
^3+67/2/(tan(1/2*d*x+1/2*c)+1)^2-501/16/(tan(1/2*d*x+1/2*c)+1))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 297, normalized size of antiderivative = 1.48 \[ \int \frac {\csc ^2(c+d x) \sec ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {8094 \, \cos \left (d x + c\right )^{6} - 9484 \, \cos \left (d x + c\right )^{4} + 620 \, \cos \left (d x + c\right )^{2} + 945 \, {\left (\cos \left (d x + c\right )^{7} - 5 \, \cos \left (d x + c\right )^{5} + 4 \, \cos \left (d x + c\right )^{3} - {\left (3 \, \cos \left (d x + c\right )^{5} - 4 \, \cos \left (d x + c\right )^{3}\right )} \sin \left (d x + c\right )\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 945 \, {\left (\cos \left (d x + c\right )^{7} - 5 \, \cos \left (d x + c\right )^{5} + 4 \, \cos \left (d x + c\right )^{3} - {\left (3 \, \cos \left (d x + c\right )^{5} - 4 \, \cos \left (d x + c\right )^{3}\right )} \sin \left (d x + c\right )\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 2 \, {\left (1664 \, \cos \left (d x + c\right )^{6} - 4653 \, \cos \left (d x + c\right )^{4} + 285 \, \cos \left (d x + c\right )^{2} + 35\right )} \sin \left (d x + c\right ) + 140}{630 \, {\left (a^{3} d \cos \left (d x + c\right )^{7} - 5 \, a^{3} d \cos \left (d x + c\right )^{5} + 4 \, a^{3} d \cos \left (d x + c\right )^{3} - {\left (3 \, a^{3} d \cos \left (d x + c\right )^{5} - 4 \, a^{3} d \cos \left (d x + c\right )^{3}\right )} \sin \left (d x + c\right )\right )}} \] Input:

integrate(csc(d*x+c)^2*sec(d*x+c)^4/(a+a*sin(d*x+c))^3,x, algorithm="frica 
s")
 

Output:

1/630*(8094*cos(d*x + c)^6 - 9484*cos(d*x + c)^4 + 620*cos(d*x + c)^2 + 94 
5*(cos(d*x + c)^7 - 5*cos(d*x + c)^5 + 4*cos(d*x + c)^3 - (3*cos(d*x + c)^ 
5 - 4*cos(d*x + c)^3)*sin(d*x + c))*log(1/2*cos(d*x + c) + 1/2) - 945*(cos 
(d*x + c)^7 - 5*cos(d*x + c)^5 + 4*cos(d*x + c)^3 - (3*cos(d*x + c)^5 - 4* 
cos(d*x + c)^3)*sin(d*x + c))*log(-1/2*cos(d*x + c) + 1/2) + 2*(1664*cos(d 
*x + c)^6 - 4653*cos(d*x + c)^4 + 285*cos(d*x + c)^2 + 35)*sin(d*x + c) + 
140)/(a^3*d*cos(d*x + c)^7 - 5*a^3*d*cos(d*x + c)^5 + 4*a^3*d*cos(d*x + c) 
^3 - (3*a^3*d*cos(d*x + c)^5 - 4*a^3*d*cos(d*x + c)^3)*sin(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\csc ^2(c+d x) \sec ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\text {Timed out} \] Input:

integrate(csc(d*x+c)**2*sec(d*x+c)**4/(a+a*sin(d*x+c))**3,x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 567 vs. \(2 (186) = 372\).

Time = 0.05 (sec) , antiderivative size = 567, normalized size of antiderivative = 2.84 \[ \int \frac {\csc ^2(c+d x) \sec ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx =\text {Too large to display} \] Input:

integrate(csc(d*x+c)^2*sec(d*x+c)^4/(a+a*sin(d*x+c))^3,x, algorithm="maxim 
a")
 

Output:

-1/630*((8786*sin(d*x + c)/(cos(d*x + c) + 1) + 35076*sin(d*x + c)^2/(cos( 
d*x + c) + 1)^2 + 43062*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 41753*sin(d* 
x + c)^4/(cos(d*x + c) + 1)^4 - 152172*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 
 - 99072*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 93324*sin(d*x + c)^7/(cos(d 
*x + c) + 1)^7 + 157689*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 + 44730*sin(d* 
x + c)^9/(cos(d*x + c) + 1)^9 - 50820*sin(d*x + c)^10/(cos(d*x + c) + 1)^1 
0 - 42210*sin(d*x + c)^11/(cos(d*x + c) + 1)^11 - 10395*sin(d*x + c)^12/(c 
os(d*x + c) + 1)^12 + 315)/(a^3*sin(d*x + c)/(cos(d*x + c) + 1) + 6*a^3*si 
n(d*x + c)^2/(cos(d*x + c) + 1)^2 + 12*a^3*sin(d*x + c)^3/(cos(d*x + c) + 
1)^3 + 2*a^3*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - 27*a^3*sin(d*x + c)^5/( 
cos(d*x + c) + 1)^5 - 36*a^3*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 + 36*a^3* 
sin(d*x + c)^8/(cos(d*x + c) + 1)^8 + 27*a^3*sin(d*x + c)^9/(cos(d*x + c) 
+ 1)^9 - 2*a^3*sin(d*x + c)^10/(cos(d*x + c) + 1)^10 - 12*a^3*sin(d*x + c) 
^11/(cos(d*x + c) + 1)^11 - 6*a^3*sin(d*x + c)^12/(cos(d*x + c) + 1)^12 - 
a^3*sin(d*x + c)^13/(cos(d*x + c) + 1)^13) + 1890*log(sin(d*x + c)/(cos(d* 
x + c) + 1))/a^3 - 315*sin(d*x + c)/(a^3*(cos(d*x + c) + 1)))/d
 

Giac [A] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.15 \[ \int \frac {\csc ^2(c+d x) \sec ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {\frac {30240 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a^{3}} - \frac {5040 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{3}} - \frac {5040 \, {\left (6 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}}{a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )} + \frac {105 \, {\left (33 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 60 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 31\right )}}{a^{3} {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{3}} + \frac {157815 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{8} + 1093680 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 3488940 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} + 6524280 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 7788186 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 6052704 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2995596 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 864504 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 113591}{a^{3} {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}^{9}}}{10080 \, d} \] Input:

integrate(csc(d*x+c)^2*sec(d*x+c)^4/(a+a*sin(d*x+c))^3,x, algorithm="giac" 
)
 

Output:

-1/10080*(30240*log(abs(tan(1/2*d*x + 1/2*c)))/a^3 - 5040*tan(1/2*d*x + 1/ 
2*c)/a^3 - 5040*(6*tan(1/2*d*x + 1/2*c) - 1)/(a^3*tan(1/2*d*x + 1/2*c)) + 
105*(33*tan(1/2*d*x + 1/2*c)^2 - 60*tan(1/2*d*x + 1/2*c) + 31)/(a^3*(tan(1 
/2*d*x + 1/2*c) - 1)^3) + (157815*tan(1/2*d*x + 1/2*c)^8 + 1093680*tan(1/2 
*d*x + 1/2*c)^7 + 3488940*tan(1/2*d*x + 1/2*c)^6 + 6524280*tan(1/2*d*x + 1 
/2*c)^5 + 7788186*tan(1/2*d*x + 1/2*c)^4 + 6052704*tan(1/2*d*x + 1/2*c)^3 
+ 2995596*tan(1/2*d*x + 1/2*c)^2 + 864504*tan(1/2*d*x + 1/2*c) + 113591)/( 
a^3*(tan(1/2*d*x + 1/2*c) + 1)^9))/d
 

Mupad [B] (verification not implemented)

Time = 35.10 (sec) , antiderivative size = 390, normalized size of antiderivative = 1.95 \[ \int \frac {\csc ^2(c+d x) \sec ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,a^3\,d}-\frac {3\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a^3\,d}-\frac {-33\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}-134\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}-\frac {484\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}}{3}+142\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+\frac {2503\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8}{5}+\frac {4444\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{15}-\frac {11008\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{35}-\frac {16908\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{35}-\frac {41753\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{315}+\frac {14354\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{105}+\frac {11692\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{105}+\frac {8786\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{315}+1}{d\,\left (-2\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{13}-12\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}-24\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}-4\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}+54\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+72\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-72\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-54\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+4\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+24\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+12\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+2\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )} \] Input:

int(1/(cos(c + d*x)^4*sin(c + d*x)^2*(a + a*sin(c + d*x))^3),x)
 

Output:

tan(c/2 + (d*x)/2)/(2*a^3*d) - (3*log(tan(c/2 + (d*x)/2)))/(a^3*d) - ((878 
6*tan(c/2 + (d*x)/2))/315 + (11692*tan(c/2 + (d*x)/2)^2)/105 + (14354*tan( 
c/2 + (d*x)/2)^3)/105 - (41753*tan(c/2 + (d*x)/2)^4)/315 - (16908*tan(c/2 
+ (d*x)/2)^5)/35 - (11008*tan(c/2 + (d*x)/2)^6)/35 + (4444*tan(c/2 + (d*x) 
/2)^7)/15 + (2503*tan(c/2 + (d*x)/2)^8)/5 + 142*tan(c/2 + (d*x)/2)^9 - (48 
4*tan(c/2 + (d*x)/2)^10)/3 - 134*tan(c/2 + (d*x)/2)^11 - 33*tan(c/2 + (d*x 
)/2)^12 + 1)/(d*(12*a^3*tan(c/2 + (d*x)/2)^2 + 24*a^3*tan(c/2 + (d*x)/2)^3 
 + 4*a^3*tan(c/2 + (d*x)/2)^4 - 54*a^3*tan(c/2 + (d*x)/2)^5 - 72*a^3*tan(c 
/2 + (d*x)/2)^6 + 72*a^3*tan(c/2 + (d*x)/2)^8 + 54*a^3*tan(c/2 + (d*x)/2)^ 
9 - 4*a^3*tan(c/2 + (d*x)/2)^10 - 24*a^3*tan(c/2 + (d*x)/2)^11 - 12*a^3*ta 
n(c/2 + (d*x)/2)^12 - 2*a^3*tan(c/2 + (d*x)/2)^13 + 2*a^3*tan(c/2 + (d*x)/ 
2)))
 

Reduce [B] (verification not implemented)

Time = 146.24 (sec) , antiderivative size = 392, normalized size of antiderivative = 1.96 \[ \int \frac {\csc ^2(c+d x) \sec ^4(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {-3780 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{6}-11340 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{5}-7560 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{4}+7560 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{3}+11340 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{2}+3780 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )-4691 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{6}-14073 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{5}-9382 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{4}+9382 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3}+14073 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2}+4691 \cos \left (d x +c \right ) \sin \left (d x +c \right )+6656 \sin \left (d x +c \right )^{7}+16188 \sin \left (d x +c \right )^{6}-1356 \sin \left (d x +c \right )^{5}-29596 \sin \left (d x +c \right )^{4}-16116 \sin \left (d x +c \right )^{3}+11868 \sin \left (d x +c \right )^{2}+10676 \sin \left (d x +c \right )+1260}{1260 \cos \left (d x +c \right ) \sin \left (d x +c \right ) a^{3} d \left (\sin \left (d x +c \right )^{5}+3 \sin \left (d x +c \right )^{4}+2 \sin \left (d x +c \right )^{3}-2 \sin \left (d x +c \right )^{2}-3 \sin \left (d x +c \right )-1\right )} \] Input:

int(csc(d*x+c)^2*sec(d*x+c)^4/(a+a*sin(d*x+c))^3,x)
 

Output:

( - 3780*cos(c + d*x)*log(tan((c + d*x)/2))*sin(c + d*x)**6 - 11340*cos(c 
+ d*x)*log(tan((c + d*x)/2))*sin(c + d*x)**5 - 7560*cos(c + d*x)*log(tan(( 
c + d*x)/2))*sin(c + d*x)**4 + 7560*cos(c + d*x)*log(tan((c + d*x)/2))*sin 
(c + d*x)**3 + 11340*cos(c + d*x)*log(tan((c + d*x)/2))*sin(c + d*x)**2 + 
3780*cos(c + d*x)*log(tan((c + d*x)/2))*sin(c + d*x) - 4691*cos(c + d*x)*s 
in(c + d*x)**6 - 14073*cos(c + d*x)*sin(c + d*x)**5 - 9382*cos(c + d*x)*si 
n(c + d*x)**4 + 9382*cos(c + d*x)*sin(c + d*x)**3 + 14073*cos(c + d*x)*sin 
(c + d*x)**2 + 4691*cos(c + d*x)*sin(c + d*x) + 6656*sin(c + d*x)**7 + 161 
88*sin(c + d*x)**6 - 1356*sin(c + d*x)**5 - 29596*sin(c + d*x)**4 - 16116* 
sin(c + d*x)**3 + 11868*sin(c + d*x)**2 + 10676*sin(c + d*x) + 1260)/(1260 
*cos(c + d*x)*sin(c + d*x)*a**3*d*(sin(c + d*x)**5 + 3*sin(c + d*x)**4 + 2 
*sin(c + d*x)**3 - 2*sin(c + d*x)**2 - 3*sin(c + d*x) - 1))