\(\int \sec (c+d x) (a+a \sin (c+d x))^2 \tan ^4(c+d x) \, dx\) [862]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 105 \[ \int \sec (c+d x) (a+a \sin (c+d x))^2 \tan ^4(c+d x) \, dx=-\frac {17 a^2 \log (1-\sin (c+d x))}{8 d}+\frac {a^2 \log (1+\sin (c+d x))}{8 d}-\frac {a^2 \sin (c+d x)}{d}+\frac {a^4}{4 d (a-a \sin (c+d x))^2}-\frac {7 a^5}{4 d \left (a^3-a^3 \sin (c+d x)\right )} \] Output:

-17/8*a^2*ln(1-sin(d*x+c))/d+1/8*a^2*ln(1+sin(d*x+c))/d-a^2*sin(d*x+c)/d+1 
/4*a^4/d/(a-a*sin(d*x+c))^2-7/4*a^5/d/(a^3-a^3*sin(d*x+c))
 

Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.64 \[ \int \sec (c+d x) (a+a \sin (c+d x))^2 \tan ^4(c+d x) \, dx=-\frac {a^2 \left (17 \log (1-\sin (c+d x))-\log (1+\sin (c+d x))-\frac {2}{(-1+\sin (c+d x))^2}-\frac {14}{-1+\sin (c+d x)}+8 \sin (c+d x)\right )}{8 d} \] Input:

Integrate[Sec[c + d*x]*(a + a*Sin[c + d*x])^2*Tan[c + d*x]^4,x]
 

Output:

-1/8*(a^2*(17*Log[1 - Sin[c + d*x]] - Log[1 + Sin[c + d*x]] - 2/(-1 + Sin[ 
c + d*x])^2 - 14/(-1 + Sin[c + d*x]) + 8*Sin[c + d*x]))/d
 

Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.84, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {3042, 3315, 27, 99, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan ^4(c+d x) \sec (c+d x) (a \sin (c+d x)+a)^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)^4 (a \sin (c+d x)+a)^2}{\cos (c+d x)^5}dx\)

\(\Big \downarrow \) 3315

\(\displaystyle \frac {a^5 \int \frac {\sin ^4(c+d x)}{(a-a \sin (c+d x))^3 (\sin (c+d x) a+a)}d(a \sin (c+d x))}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {a \int \frac {a^4 \sin ^4(c+d x)}{(a-a \sin (c+d x))^3 (\sin (c+d x) a+a)}d(a \sin (c+d x))}{d}\)

\(\Big \downarrow \) 99

\(\displaystyle \frac {a \int \left (\frac {a^3}{2 (a-a \sin (c+d x))^3}-\frac {7 a^2}{4 (a-a \sin (c+d x))^2}+\frac {17 a}{8 (a-a \sin (c+d x))}+\frac {a}{8 (\sin (c+d x) a+a)}-1\right )d(a \sin (c+d x))}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {a \left (\frac {a^3}{4 (a-a \sin (c+d x))^2}-\frac {7 a^2}{4 (a-a \sin (c+d x))}-a \sin (c+d x)-\frac {17}{8} a \log (a-a \sin (c+d x))+\frac {1}{8} a \log (a \sin (c+d x)+a)\right )}{d}\)

Input:

Int[Sec[c + d*x]*(a + a*Sin[c + d*x])^2*Tan[c + d*x]^4,x]
 

Output:

(a*((-17*a*Log[a - a*Sin[c + d*x]])/8 + (a*Log[a + a*Sin[c + d*x]])/8 - a* 
Sin[c + d*x] + a^3/(4*(a - a*Sin[c + d*x])^2) - (7*a^2)/(4*(a - a*Sin[c + 
d*x]))))/d
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 99
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], 
 x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] && (IntegerQ[p] | 
| (GtQ[m, 0] && GeQ[n, -1]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3315
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(b^p* 
f)   Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x)^n, 
 x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && Intege 
rQ[(p - 1)/2] && EqQ[a^2 - b^2, 0]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.33 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.48

method result size
risch \(2 i a^{2} x +\frac {i a^{2} {\mathrm e}^{i \left (d x +c \right )}}{2 d}-\frac {i a^{2} {\mathrm e}^{-i \left (d x +c \right )}}{2 d}+\frac {4 i a^{2} c}{d}+\frac {i a^{2} \left (-12 i {\mathrm e}^{2 i \left (d x +c \right )}+7 \,{\mathrm e}^{3 i \left (d x +c \right )}-7 \,{\mathrm e}^{i \left (d x +c \right )}\right )}{2 d \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{4}}-\frac {17 a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{4 d}+\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{4 d}\) \(155\)
derivativedivides \(\frac {a^{2} \left (\frac {\sin \left (d x +c \right )^{7}}{4 \cos \left (d x +c \right )^{4}}-\frac {3 \sin \left (d x +c \right )^{7}}{8 \cos \left (d x +c \right )^{2}}-\frac {3 \sin \left (d x +c \right )^{5}}{8}-\frac {5 \sin \left (d x +c \right )^{3}}{8}-\frac {15 \sin \left (d x +c \right )}{8}+\frac {15 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+2 a^{2} \left (\frac {\tan \left (d x +c \right )^{4}}{4}-\frac {\tan \left (d x +c \right )^{2}}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )+a^{2} \left (\frac {\sin \left (d x +c \right )^{5}}{4 \cos \left (d x +c \right )^{4}}-\frac {\sin \left (d x +c \right )^{5}}{8 \cos \left (d x +c \right )^{2}}-\frac {\sin \left (d x +c \right )^{3}}{8}-\frac {3 \sin \left (d x +c \right )}{8}+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(201\)
default \(\frac {a^{2} \left (\frac {\sin \left (d x +c \right )^{7}}{4 \cos \left (d x +c \right )^{4}}-\frac {3 \sin \left (d x +c \right )^{7}}{8 \cos \left (d x +c \right )^{2}}-\frac {3 \sin \left (d x +c \right )^{5}}{8}-\frac {5 \sin \left (d x +c \right )^{3}}{8}-\frac {15 \sin \left (d x +c \right )}{8}+\frac {15 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+2 a^{2} \left (\frac {\tan \left (d x +c \right )^{4}}{4}-\frac {\tan \left (d x +c \right )^{2}}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )+a^{2} \left (\frac {\sin \left (d x +c \right )^{5}}{4 \cos \left (d x +c \right )^{4}}-\frac {\sin \left (d x +c \right )^{5}}{8 \cos \left (d x +c \right )^{2}}-\frac {\sin \left (d x +c \right )^{3}}{8}-\frac {3 \sin \left (d x +c \right )}{8}+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}\) \(201\)

Input:

int(sec(d*x+c)*(a+a*sin(d*x+c))^2*tan(d*x+c)^4,x,method=_RETURNVERBOSE)
 

Output:

2*I*a^2*x+1/2*I*a^2/d*exp(I*(d*x+c))-1/2*I*a^2/d*exp(-I*(d*x+c))+4*I*a^2/d 
*c+1/2*I*a^2/d/(exp(I*(d*x+c))-I)^4*(-12*I*exp(2*I*(d*x+c))+7*exp(3*I*(d*x 
+c))-7*exp(I*(d*x+c)))-17/4*a^2/d*ln(exp(I*(d*x+c))-I)+1/4*a^2/d*ln(exp(I* 
(d*x+c))+I)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.47 \[ \int \sec (c+d x) (a+a \sin (c+d x))^2 \tan ^4(c+d x) \, dx=\frac {16 \, a^{2} \cos \left (d x + c\right )^{2} - 4 \, a^{2} + {\left (a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \sin \left (d x + c\right ) - 2 \, a^{2}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 17 \, {\left (a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \sin \left (d x + c\right ) - 2 \, a^{2}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (4 \, a^{2} \cos \left (d x + c\right )^{2} - a^{2}\right )} \sin \left (d x + c\right )}{8 \, {\left (d \cos \left (d x + c\right )^{2} + 2 \, d \sin \left (d x + c\right ) - 2 \, d\right )}} \] Input:

integrate(sec(d*x+c)*(a+a*sin(d*x+c))^2*tan(d*x+c)^4,x, algorithm="fricas" 
)
 

Output:

1/8*(16*a^2*cos(d*x + c)^2 - 4*a^2 + (a^2*cos(d*x + c)^2 + 2*a^2*sin(d*x + 
 c) - 2*a^2)*log(sin(d*x + c) + 1) - 17*(a^2*cos(d*x + c)^2 + 2*a^2*sin(d* 
x + c) - 2*a^2)*log(-sin(d*x + c) + 1) - 2*(4*a^2*cos(d*x + c)^2 - a^2)*si 
n(d*x + c))/(d*cos(d*x + c)^2 + 2*d*sin(d*x + c) - 2*d)
 

Sympy [F]

\[ \int \sec (c+d x) (a+a \sin (c+d x))^2 \tan ^4(c+d x) \, dx=a^{2} \left (\int \tan ^{4}{\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx + \int 2 \sin {\left (c + d x \right )} \tan ^{4}{\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx + \int \sin ^{2}{\left (c + d x \right )} \tan ^{4}{\left (c + d x \right )} \sec {\left (c + d x \right )}\, dx\right ) \] Input:

integrate(sec(d*x+c)*(a+a*sin(d*x+c))**2*tan(d*x+c)**4,x)
 

Output:

a**2*(Integral(tan(c + d*x)**4*sec(c + d*x), x) + Integral(2*sin(c + d*x)* 
tan(c + d*x)**4*sec(c + d*x), x) + Integral(sin(c + d*x)**2*tan(c + d*x)** 
4*sec(c + d*x), x))
 

Maxima [A] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.79 \[ \int \sec (c+d x) (a+a \sin (c+d x))^2 \tan ^4(c+d x) \, dx=\frac {a^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - 17 \, a^{2} \log \left (\sin \left (d x + c\right ) - 1\right ) - 8 \, a^{2} \sin \left (d x + c\right ) + \frac {2 \, {\left (7 \, a^{2} \sin \left (d x + c\right ) - 6 \, a^{2}\right )}}{\sin \left (d x + c\right )^{2} - 2 \, \sin \left (d x + c\right ) + 1}}{8 \, d} \] Input:

integrate(sec(d*x+c)*(a+a*sin(d*x+c))^2*tan(d*x+c)^4,x, algorithm="maxima" 
)
 

Output:

1/8*(a^2*log(sin(d*x + c) + 1) - 17*a^2*log(sin(d*x + c) - 1) - 8*a^2*sin( 
d*x + c) + 2*(7*a^2*sin(d*x + c) - 6*a^2)/(sin(d*x + c)^2 - 2*sin(d*x + c) 
 + 1))/d
 

Giac [A] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.68 \[ \int \sec (c+d x) (a+a \sin (c+d x))^2 \tan ^4(c+d x) \, dx=\frac {1}{8} \, a^{2} {\left (\frac {\log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right )}{d} - \frac {17 \, \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right )}{d} - \frac {8 \, \sin \left (d x + c\right )}{d} + \frac {2 \, {\left (7 \, \sin \left (d x + c\right ) - 6\right )}}{d {\left (\sin \left (d x + c\right ) - 1\right )}^{2}}\right )} \] Input:

integrate(sec(d*x+c)*(a+a*sin(d*x+c))^2*tan(d*x+c)^4,x, algorithm="giac")
 

Output:

1/8*a^2*(log(abs(sin(d*x + c) + 1))/d - 17*log(abs(sin(d*x + c) - 1))/d - 
8*sin(d*x + c)/d + 2*(7*sin(d*x + c) - 6)/(d*(sin(d*x + c) - 1)^2))
 

Mupad [B] (verification not implemented)

Time = 32.32 (sec) , antiderivative size = 225, normalized size of antiderivative = 2.14 \[ \int \sec (c+d x) (a+a \sin (c+d x))^2 \tan ^4(c+d x) \, dx=\frac {a^2\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}{4\,d}-\frac {17\,a^2\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )}{4\,d}-\frac {\frac {9\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{2}-14\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+17\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3-14\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+\frac {9\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2}}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+7\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-8\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+7\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}+\frac {2\,a^2\,\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{d} \] Input:

int((tan(c + d*x)^4*(a + a*sin(c + d*x))^2)/cos(c + d*x),x)
 

Output:

(a^2*log(tan(c/2 + (d*x)/2) + 1))/(4*d) - (17*a^2*log(tan(c/2 + (d*x)/2) - 
 1))/(4*d) - (17*a^2*tan(c/2 + (d*x)/2)^3 - 14*a^2*tan(c/2 + (d*x)/2)^2 - 
14*a^2*tan(c/2 + (d*x)/2)^4 + (9*a^2*tan(c/2 + (d*x)/2)^5)/2 + (9*a^2*tan( 
c/2 + (d*x)/2))/2)/(d*(7*tan(c/2 + (d*x)/2)^2 - 4*tan(c/2 + (d*x)/2) - 8*t 
an(c/2 + (d*x)/2)^3 + 7*tan(c/2 + (d*x)/2)^4 - 4*tan(c/2 + (d*x)/2)^5 + ta 
n(c/2 + (d*x)/2)^6 + 1)) + (2*a^2*log(tan(c/2 + (d*x)/2)^2 + 1))/d
 

Reduce [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 224, normalized size of antiderivative = 2.13 \[ \int \sec (c+d x) (a+a \sin (c+d x))^2 \tan ^4(c+d x) \, dx=\frac {a^{2} \left (16 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (d x +c \right )^{2}-32 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (d x +c \right )+16 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right )-34 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2}+68 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )-34 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+2 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2}-4 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )+2 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-8 \sin \left (d x +c \right )^{3}+19 \sin \left (d x +c \right )^{2}-9\right )}{8 d \left (\sin \left (d x +c \right )^{2}-2 \sin \left (d x +c \right )+1\right )} \] Input:

int(sec(d*x+c)*(a+a*sin(d*x+c))^2*tan(d*x+c)^4,x)
 

Output:

(a**2*(16*log(tan((c + d*x)/2)**2 + 1)*sin(c + d*x)**2 - 32*log(tan((c + d 
*x)/2)**2 + 1)*sin(c + d*x) + 16*log(tan((c + d*x)/2)**2 + 1) - 34*log(tan 
((c + d*x)/2) - 1)*sin(c + d*x)**2 + 68*log(tan((c + d*x)/2) - 1)*sin(c + 
d*x) - 34*log(tan((c + d*x)/2) - 1) + 2*log(tan((c + d*x)/2) + 1)*sin(c + 
d*x)**2 - 4*log(tan((c + d*x)/2) + 1)*sin(c + d*x) + 2*log(tan((c + d*x)/2 
) + 1) - 8*sin(c + d*x)**3 + 19*sin(c + d*x)**2 - 9))/(8*d*(sin(c + d*x)** 
2 - 2*sin(c + d*x) + 1))