\(\int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx\) [64]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 38, antiderivative size = 152 \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=-\frac {\cos (e+f x)}{2 a c f (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {\cos (e+f x)}{2 a^2 c f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {\text {arctanh}(\sin (e+f x)) \cos (e+f x)}{2 a^2 c^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \] Output:

-1/2*cos(f*x+e)/a/c/f/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2)+1/2*co 
s(f*x+e)/a^2/c/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(3/2)+1/2*arctanh 
(sin(f*x+e))*cos(f*x+e)/a^2/c^2/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^ 
(1/2)
 

Mathematica [A] (verified)

Time = 7.72 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.07 \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\frac {\sec (e+f x) \left (-\log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )+\log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )+\cos (2 (e+f x)) \left (-\log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )+\log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )\right )+2 \sin (e+f x)\right )}{4 a^2 c^2 f \sqrt {a (1+\sin (e+f x))} \sqrt {c-c \sin (e+f x)}} \] Input:

Integrate[Cos[e + f*x]^2/((a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e + f*x])^ 
(5/2)),x]
 

Output:

(Sec[e + f*x]*(-Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] + Log[Cos[(e + f* 
x)/2] + Sin[(e + f*x)/2]] + Cos[2*(e + f*x)]*(-Log[Cos[(e + f*x)/2] - Sin[ 
(e + f*x)/2]] + Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]]) + 2*Sin[e + f*x] 
))/(4*a^2*c^2*f*Sqrt[a*(1 + Sin[e + f*x])]*Sqrt[c - c*Sin[e + f*x]])
 

Rubi [A] (verified)

Time = 1.10 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.98, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {3042, 3320, 3042, 3222, 3042, 3222, 3042, 3220, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^2(e+f x)}{(a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (e+f x)^2}{(a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{5/2}}dx\)

\(\Big \downarrow \) 3320

\(\displaystyle \frac {\int \frac {1}{(\sin (e+f x) a+a)^{3/2} (c-c \sin (e+f x))^{3/2}}dx}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {1}{(\sin (e+f x) a+a)^{3/2} (c-c \sin (e+f x))^{3/2}}dx}{a c}\)

\(\Big \downarrow \) 3222

\(\displaystyle \frac {\frac {\int \frac {1}{\sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{3/2}}dx}{a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {1}{\sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{3/2}}dx}{a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}}{a c}\)

\(\Big \downarrow \) 3222

\(\displaystyle \frac {\frac {\frac {\int \frac {1}{\sqrt {\sin (e+f x) a+a} \sqrt {c-c \sin (e+f x)}}dx}{2 c}+\frac {\cos (e+f x)}{2 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}}{a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\int \frac {1}{\sqrt {\sin (e+f x) a+a} \sqrt {c-c \sin (e+f x)}}dx}{2 c}+\frac {\cos (e+f x)}{2 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}}{a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}}{a c}\)

\(\Big \downarrow \) 3220

\(\displaystyle \frac {\frac {\frac {\cos (e+f x) \int \sec (e+f x)dx}{2 c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {\cos (e+f x)}{2 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}}{a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\cos (e+f x) \int \csc \left (e+f x+\frac {\pi }{2}\right )dx}{2 c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {\cos (e+f x)}{2 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}}{a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}}{a c}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {\frac {\cos (e+f x) \text {arctanh}(\sin (e+f x))}{2 c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {\cos (e+f x)}{2 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}}{a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}}{a c}\)

Input:

Int[Cos[e + f*x]^2/((a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e + f*x])^(5/2)) 
,x]
 

Output:

(-1/2*Cos[e + f*x]/(f*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2 
)) + (Cos[e + f*x]/(2*f*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2 
)) + (ArcTanh[Sin[e + f*x]]*Cos[e + f*x])/(2*c*f*Sqrt[a + a*Sin[e + f*x]]* 
Sqrt[c - c*Sin[e + f*x]]))/a)/(a*c)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3220
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_ 
.) + (f_.)*(x_)]]), x_Symbol] :> Simp[Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x] 
]*Sqrt[c + d*Sin[e + f*x]])   Int[1/Cos[e + f*x], x], x] /; FreeQ[{a, b, c, 
 d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
 

rule 3222
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*( 
(c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] + Simp[(m + n + 1)/(a*(2*m + 1) 
)   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; Free 
Q[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && 
 ILtQ[Simplify[m + n + 1], 0] && NeQ[m, -2^(-1)] && (SumSimplerQ[m, 1] || 
!SumSimplerQ[n, 1])
 

rule 3320
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(a^(p/ 
2)*c^(p/2))   Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(n + 
p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && 
EqQ[a^2 - b^2, 0] && IntegerQ[p/2]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [F]

\[\int \frac {\cos \left (f x +e \right )^{2}}{\left (a +a \sin \left (f x +e \right )\right )^{\frac {5}{2}} \left (c -c \sin \left (f x +e \right )\right )^{\frac {5}{2}}}d x\]

Input:

int(cos(f*x+e)^2/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(5/2),x)
 

Output:

int(cos(f*x+e)^2/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(5/2),x)
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.71 \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\left [\frac {\sqrt {a c} \cos \left (f x + e\right )^{3} \log \left (-\frac {a c \cos \left (f x + e\right )^{3} - 2 \, a c \cos \left (f x + e\right ) - 2 \, \sqrt {a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{\cos \left (f x + e\right )^{3}}\right ) + 2 \, \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{4 \, a^{3} c^{3} f \cos \left (f x + e\right )^{3}}, -\frac {\sqrt {-a c} \arctan \left (\frac {\sqrt {-a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{a c \cos \left (f x + e\right )}\right ) \cos \left (f x + e\right )^{3} - \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{2 \, a^{3} c^{3} f \cos \left (f x + e\right )^{3}}\right ] \] Input:

integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(5/2),x, al 
gorithm="fricas")
 

Output:

[1/4*(sqrt(a*c)*cos(f*x + e)^3*log(-(a*c*cos(f*x + e)^3 - 2*a*c*cos(f*x + 
e) - 2*sqrt(a*c)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*sin(f* 
x + e))/cos(f*x + e)^3) + 2*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) 
+ c)*sin(f*x + e))/(a^3*c^3*f*cos(f*x + e)^3), -1/2*(sqrt(-a*c)*arctan(sqr 
t(-a*c)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*sin(f*x + e)/(a 
*c*cos(f*x + e)))*cos(f*x + e)^3 - sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f* 
x + e) + c)*sin(f*x + e))/(a^3*c^3*f*cos(f*x + e)^3)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(cos(f*x+e)**2/(a+a*sin(f*x+e))**(5/2)/(c-c*sin(f*x+e))**(5/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\int { \frac {\cos \left (f x + e\right )^{2}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(5/2),x, al 
gorithm="maxima")
 

Output:

integrate(cos(f*x + e)^2/((a*sin(f*x + e) + a)^(5/2)*(-c*sin(f*x + e) + c) 
^(5/2)), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(5/2),x, al 
gorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^2}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{5/2}\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \] Input:

int(cos(e + f*x)^2/((a + a*sin(e + f*x))^(5/2)*(c - c*sin(e + f*x))^(5/2)) 
,x)
 

Output:

int(cos(e + f*x)^2/((a + a*sin(e + f*x))^(5/2)*(c - c*sin(e + f*x))^(5/2)) 
, x)
 

Reduce [F]

\[ \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=-\frac {\sqrt {c}\, \sqrt {a}\, \left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \cos \left (f x +e \right )^{2}}{\sin \left (f x +e \right )^{6}-3 \sin \left (f x +e \right )^{4}+3 \sin \left (f x +e \right )^{2}-1}d x \right )}{a^{3} c^{3}} \] Input:

int(cos(f*x+e)^2/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(5/2),x)
 

Output:

( - sqrt(c)*sqrt(a)*int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1)* 
cos(e + f*x)**2)/(sin(e + f*x)**6 - 3*sin(e + f*x)**4 + 3*sin(e + f*x)**2 
- 1),x))/(a**3*c**3)