\(\int \frac {\sec ^6(c+d x) \tan ^3(c+d x)}{a+a \sin (c+d x)} \, dx\) [902]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 174 \[ \int \frac {\sec ^6(c+d x) \tan ^3(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {3 \text {arctanh}(\sin (c+d x))}{256 a d}-\frac {\sec ^8(c+d x)}{8 a d}+\frac {\sec ^{10}(c+d x)}{10 a d}-\frac {3 \sec (c+d x) \tan (c+d x)}{256 a d}-\frac {\sec ^3(c+d x) \tan (c+d x)}{128 a d}-\frac {\sec ^5(c+d x) \tan (c+d x)}{160 a d}+\frac {3 \sec ^7(c+d x) \tan (c+d x)}{80 a d}-\frac {\sec ^7(c+d x) \tan ^3(c+d x)}{10 a d} \] Output:

-3/256*arctanh(sin(d*x+c))/a/d-1/8*sec(d*x+c)^8/a/d+1/10*sec(d*x+c)^10/a/d 
-3/256*sec(d*x+c)*tan(d*x+c)/a/d-1/128*sec(d*x+c)^3*tan(d*x+c)/a/d-1/160*s 
ec(d*x+c)^5*tan(d*x+c)/a/d+3/80*sec(d*x+c)^7*tan(d*x+c)/a/d-1/10*sec(d*x+c 
)^7*tan(d*x+c)^3/a/d
 

Mathematica [A] (verified)

Time = 2.87 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.60 \[ \int \frac {\sec ^6(c+d x) \tan ^3(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {30 \text {arctanh}(\sin (c+d x))-\frac {10}{(-1+\sin (c+d x))^4}+\frac {15}{(-1+\sin (c+d x))^2}-\frac {30}{-1+\sin (c+d x)}-\frac {16}{(1+\sin (c+d x))^5}+\frac {10}{(1+\sin (c+d x))^4}+\frac {20}{(1+\sin (c+d x))^3}+\frac {15}{(1+\sin (c+d x))^2}}{2560 a d} \] Input:

Integrate[(Sec[c + d*x]^6*Tan[c + d*x]^3)/(a + a*Sin[c + d*x]),x]
 

Output:

-1/2560*(30*ArcTanh[Sin[c + d*x]] - 10/(-1 + Sin[c + d*x])^4 + 15/(-1 + Si 
n[c + d*x])^2 - 30/(-1 + Sin[c + d*x]) - 16/(1 + Sin[c + d*x])^5 + 10/(1 + 
 Sin[c + d*x])^4 + 20/(1 + Sin[c + d*x])^3 + 15/(1 + Sin[c + d*x])^2)/(a*d 
)
 

Rubi [A] (verified)

Time = 1.07 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.02, number of steps used = 19, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.621, Rules used = {3042, 3314, 3042, 3086, 25, 244, 2009, 3091, 3042, 3091, 3042, 4255, 3042, 4255, 3042, 4255, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^3(c+d x) \sec ^6(c+d x)}{a \sin (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)^3}{\cos (c+d x)^9 (a \sin (c+d x)+a)}dx\)

\(\Big \downarrow \) 3314

\(\displaystyle \frac {\int \sec ^8(c+d x) \tan ^3(c+d x)dx}{a}-\frac {\int \sec ^7(c+d x) \tan ^4(c+d x)dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \sec (c+d x)^8 \tan (c+d x)^3dx}{a}-\frac {\int \sec (c+d x)^7 \tan (c+d x)^4dx}{a}\)

\(\Big \downarrow \) 3086

\(\displaystyle \frac {\int -\sec ^7(c+d x) \left (1-\sec ^2(c+d x)\right )d\sec (c+d x)}{a d}-\frac {\int \sec (c+d x)^7 \tan (c+d x)^4dx}{a}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \sec ^7(c+d x) \left (1-\sec ^2(c+d x)\right )d\sec (c+d x)}{a d}-\frac {\int \sec (c+d x)^7 \tan (c+d x)^4dx}{a}\)

\(\Big \downarrow \) 244

\(\displaystyle -\frac {\int \left (\sec ^7(c+d x)-\sec ^9(c+d x)\right )d\sec (c+d x)}{a d}-\frac {\int \sec (c+d x)^7 \tan (c+d x)^4dx}{a}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {1}{10} \sec ^{10}(c+d x)-\frac {1}{8} \sec ^8(c+d x)}{a d}-\frac {\int \sec (c+d x)^7 \tan (c+d x)^4dx}{a}\)

\(\Big \downarrow \) 3091

\(\displaystyle \frac {\frac {1}{10} \sec ^{10}(c+d x)-\frac {1}{8} \sec ^8(c+d x)}{a d}-\frac {\frac {\tan ^3(c+d x) \sec ^7(c+d x)}{10 d}-\frac {3}{10} \int \sec ^7(c+d x) \tan ^2(c+d x)dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{10} \sec ^{10}(c+d x)-\frac {1}{8} \sec ^8(c+d x)}{a d}-\frac {\frac {\tan ^3(c+d x) \sec ^7(c+d x)}{10 d}-\frac {3}{10} \int \sec (c+d x)^7 \tan (c+d x)^2dx}{a}\)

\(\Big \downarrow \) 3091

\(\displaystyle \frac {\frac {1}{10} \sec ^{10}(c+d x)-\frac {1}{8} \sec ^8(c+d x)}{a d}-\frac {\frac {\tan ^3(c+d x) \sec ^7(c+d x)}{10 d}-\frac {3}{10} \left (\frac {\tan (c+d x) \sec ^7(c+d x)}{8 d}-\frac {1}{8} \int \sec ^7(c+d x)dx\right )}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{10} \sec ^{10}(c+d x)-\frac {1}{8} \sec ^8(c+d x)}{a d}-\frac {\frac {\tan ^3(c+d x) \sec ^7(c+d x)}{10 d}-\frac {3}{10} \left (\frac {\tan (c+d x) \sec ^7(c+d x)}{8 d}-\frac {1}{8} \int \csc \left (c+d x+\frac {\pi }{2}\right )^7dx\right )}{a}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {\frac {1}{10} \sec ^{10}(c+d x)-\frac {1}{8} \sec ^8(c+d x)}{a d}-\frac {\frac {\tan ^3(c+d x) \sec ^7(c+d x)}{10 d}-\frac {3}{10} \left (\frac {1}{8} \left (-\frac {5}{6} \int \sec ^5(c+d x)dx-\frac {\tan (c+d x) \sec ^5(c+d x)}{6 d}\right )+\frac {\tan (c+d x) \sec ^7(c+d x)}{8 d}\right )}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{10} \sec ^{10}(c+d x)-\frac {1}{8} \sec ^8(c+d x)}{a d}-\frac {\frac {\tan ^3(c+d x) \sec ^7(c+d x)}{10 d}-\frac {3}{10} \left (\frac {1}{8} \left (-\frac {5}{6} \int \csc \left (c+d x+\frac {\pi }{2}\right )^5dx-\frac {\tan (c+d x) \sec ^5(c+d x)}{6 d}\right )+\frac {\tan (c+d x) \sec ^7(c+d x)}{8 d}\right )}{a}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {\frac {1}{10} \sec ^{10}(c+d x)-\frac {1}{8} \sec ^8(c+d x)}{a d}-\frac {\frac {\tan ^3(c+d x) \sec ^7(c+d x)}{10 d}-\frac {3}{10} \left (\frac {1}{8} \left (-\frac {5}{6} \left (\frac {3}{4} \int \sec ^3(c+d x)dx+\frac {\tan (c+d x) \sec ^3(c+d x)}{4 d}\right )-\frac {\tan (c+d x) \sec ^5(c+d x)}{6 d}\right )+\frac {\tan (c+d x) \sec ^7(c+d x)}{8 d}\right )}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{10} \sec ^{10}(c+d x)-\frac {1}{8} \sec ^8(c+d x)}{a d}-\frac {\frac {\tan ^3(c+d x) \sec ^7(c+d x)}{10 d}-\frac {3}{10} \left (\frac {1}{8} \left (-\frac {5}{6} \left (\frac {3}{4} \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx+\frac {\tan (c+d x) \sec ^3(c+d x)}{4 d}\right )-\frac {\tan (c+d x) \sec ^5(c+d x)}{6 d}\right )+\frac {\tan (c+d x) \sec ^7(c+d x)}{8 d}\right )}{a}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {\frac {1}{10} \sec ^{10}(c+d x)-\frac {1}{8} \sec ^8(c+d x)}{a d}-\frac {\frac {\tan ^3(c+d x) \sec ^7(c+d x)}{10 d}-\frac {3}{10} \left (\frac {1}{8} \left (-\frac {5}{6} \left (\frac {3}{4} \left (\frac {1}{2} \int \sec (c+d x)dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {\tan (c+d x) \sec ^3(c+d x)}{4 d}\right )-\frac {\tan (c+d x) \sec ^5(c+d x)}{6 d}\right )+\frac {\tan (c+d x) \sec ^7(c+d x)}{8 d}\right )}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{10} \sec ^{10}(c+d x)-\frac {1}{8} \sec ^8(c+d x)}{a d}-\frac {\frac {\tan ^3(c+d x) \sec ^7(c+d x)}{10 d}-\frac {3}{10} \left (\frac {1}{8} \left (-\frac {5}{6} \left (\frac {3}{4} \left (\frac {1}{2} \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {\tan (c+d x) \sec ^3(c+d x)}{4 d}\right )-\frac {\tan (c+d x) \sec ^5(c+d x)}{6 d}\right )+\frac {\tan (c+d x) \sec ^7(c+d x)}{8 d}\right )}{a}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {1}{10} \sec ^{10}(c+d x)-\frac {1}{8} \sec ^8(c+d x)}{a d}-\frac {\frac {\tan ^3(c+d x) \sec ^7(c+d x)}{10 d}-\frac {3}{10} \left (\frac {1}{8} \left (-\frac {5}{6} \left (\frac {3}{4} \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {\tan (c+d x) \sec ^3(c+d x)}{4 d}\right )-\frac {\tan (c+d x) \sec ^5(c+d x)}{6 d}\right )+\frac {\tan (c+d x) \sec ^7(c+d x)}{8 d}\right )}{a}\)

Input:

Int[(Sec[c + d*x]^6*Tan[c + d*x]^3)/(a + a*Sin[c + d*x]),x]
 

Output:

(-1/8*Sec[c + d*x]^8 + Sec[c + d*x]^10/10)/(a*d) - ((Sec[c + d*x]^7*Tan[c 
+ d*x]^3)/(10*d) - (3*((Sec[c + d*x]^7*Tan[c + d*x])/(8*d) + (-1/6*(Sec[c 
+ d*x]^5*Tan[c + d*x])/d - (5*((Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + (3*(A 
rcTanh[Sin[c + d*x]]/(2*d) + (Sec[c + d*x]*Tan[c + d*x])/(2*d)))/4))/6)/8) 
)/10)/a
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 244
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Expand 
Integrand[(c*x)^m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && IGtQ[p 
, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3086
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_.), x_Symbol] :> Simp[a/f   Subst[Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2 
), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2 
] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])
 

rule 3091
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_), x_Symbol] :> Simp[b*(a*Sec[e + f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*(m 
 + n - 1))), x] - Simp[b^2*((n - 1)/(m + n - 1))   Int[(a*Sec[e + f*x])^m*( 
b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] & 
& NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]
 

rule 3314
Int[(cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/(( 
a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[1/a   Int[Cos[e + f 
*x]^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Simp[1/(b*d)   Int[Cos[e + f*x]^(p 
 - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n, p}, x] & 
& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && IntegerQ[n] && (LtQ[0, n, (p 
+ 1)/2] || (LeQ[p, -n] && LtQ[-n, 2*p - 3]) || (GtQ[n, 0] && LeQ[n, -p]))
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 55.84 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.66

method result size
derivativedivides \(\frac {\frac {1}{256 \left (\sin \left (d x +c \right )-1\right )^{4}}-\frac {3}{512 \left (\sin \left (d x +c \right )-1\right )^{2}}+\frac {3}{256 \left (\sin \left (d x +c \right )-1\right )}+\frac {3 \ln \left (\sin \left (d x +c \right )-1\right )}{512}+\frac {1}{160 \left (1+\sin \left (d x +c \right )\right )^{5}}-\frac {1}{256 \left (1+\sin \left (d x +c \right )\right )^{4}}-\frac {1}{128 \left (1+\sin \left (d x +c \right )\right )^{3}}-\frac {3}{512 \left (1+\sin \left (d x +c \right )\right )^{2}}-\frac {3 \ln \left (1+\sin \left (d x +c \right )\right )}{512}}{d a}\) \(115\)
default \(\frac {\frac {1}{256 \left (\sin \left (d x +c \right )-1\right )^{4}}-\frac {3}{512 \left (\sin \left (d x +c \right )-1\right )^{2}}+\frac {3}{256 \left (\sin \left (d x +c \right )-1\right )}+\frac {3 \ln \left (\sin \left (d x +c \right )-1\right )}{512}+\frac {1}{160 \left (1+\sin \left (d x +c \right )\right )^{5}}-\frac {1}{256 \left (1+\sin \left (d x +c \right )\right )^{4}}-\frac {1}{128 \left (1+\sin \left (d x +c \right )\right )^{3}}-\frac {3}{512 \left (1+\sin \left (d x +c \right )\right )^{2}}-\frac {3 \ln \left (1+\sin \left (d x +c \right )\right )}{512}}{d a}\) \(115\)
risch \(\frac {i \left (1482 i {\mathrm e}^{8 i \left (d x +c \right )}+15 \,{\mathrm e}^{17 i \left (d x +c \right )}+15 \,{\mathrm e}^{i \left (d x +c \right )}+13770 \,{\mathrm e}^{9 i \left (d x +c \right )}+268 \,{\mathrm e}^{13 i \left (d x +c \right )}-11364 \,{\mathrm e}^{11 i \left (d x +c \right )}+100 \,{\mathrm e}^{15 i \left (d x +c \right )}+230 i {\mathrm e}^{14 i \left (d x +c \right )}+100 \,{\mathrm e}^{3 i \left (d x +c \right )}-766 i {\mathrm e}^{6 i \left (d x +c \right )}+766 i {\mathrm e}^{12 i \left (d x +c \right )}+30 i {\mathrm e}^{16 i \left (d x +c \right )}-30 i {\mathrm e}^{2 i \left (d x +c \right )}-1482 i {\mathrm e}^{10 i \left (d x +c \right )}-230 i {\mathrm e}^{4 i \left (d x +c \right )}-11364 \,{\mathrm e}^{7 i \left (d x +c \right )}+268 \,{\mathrm e}^{5 i \left (d x +c \right )}\right )}{640 \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{10} \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{8} d a}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{256 a d}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{256 a d}\) \(277\)

Input:

int(sec(d*x+c)^6*tan(d*x+c)^3/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

1/d/a*(1/256/(sin(d*x+c)-1)^4-3/512/(sin(d*x+c)-1)^2+3/256/(sin(d*x+c)-1)+ 
3/512*ln(sin(d*x+c)-1)+1/160/(1+sin(d*x+c))^5-1/256/(1+sin(d*x+c))^4-1/128 
/(1+sin(d*x+c))^3-3/512/(1+sin(d*x+c))^2-3/512*ln(1+sin(d*x+c)))
 

Fricas [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.07 \[ \int \frac {\sec ^6(c+d x) \tan ^3(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {30 \, \cos \left (d x + c\right )^{8} - 10 \, \cos \left (d x + c\right )^{6} - 4 \, \cos \left (d x + c\right )^{4} - 368 \, \cos \left (d x + c\right )^{2} - 15 \, {\left (\cos \left (d x + c\right )^{8} \sin \left (d x + c\right ) + \cos \left (d x + c\right )^{8}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + 15 \, {\left (\cos \left (d x + c\right )^{8} \sin \left (d x + c\right ) + \cos \left (d x + c\right )^{8}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (15 \, \cos \left (d x + c\right )^{6} + 10 \, \cos \left (d x + c\right )^{4} + 8 \, \cos \left (d x + c\right )^{2} - 16\right )} \sin \left (d x + c\right ) + 288}{2560 \, {\left (a d \cos \left (d x + c\right )^{8} \sin \left (d x + c\right ) + a d \cos \left (d x + c\right )^{8}\right )}} \] Input:

integrate(sec(d*x+c)^6*tan(d*x+c)^3/(a+a*sin(d*x+c)),x, algorithm="fricas" 
)
 

Output:

1/2560*(30*cos(d*x + c)^8 - 10*cos(d*x + c)^6 - 4*cos(d*x + c)^4 - 368*cos 
(d*x + c)^2 - 15*(cos(d*x + c)^8*sin(d*x + c) + cos(d*x + c)^8)*log(sin(d* 
x + c) + 1) + 15*(cos(d*x + c)^8*sin(d*x + c) + cos(d*x + c)^8)*log(-sin(d 
*x + c) + 1) - 2*(15*cos(d*x + c)^6 + 10*cos(d*x + c)^4 + 8*cos(d*x + c)^2 
 - 16)*sin(d*x + c) + 288)/(a*d*cos(d*x + c)^8*sin(d*x + c) + a*d*cos(d*x 
+ c)^8)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^6(c+d x) \tan ^3(c+d x)}{a+a \sin (c+d x)} \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)**6*tan(d*x+c)**3/(a+a*sin(d*x+c)),x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.23 \[ \int \frac {\sec ^6(c+d x) \tan ^3(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {2 \, {\left (15 \, \sin \left (d x + c\right )^{8} + 15 \, \sin \left (d x + c\right )^{7} - 55 \, \sin \left (d x + c\right )^{6} - 55 \, \sin \left (d x + c\right )^{5} + 73 \, \sin \left (d x + c\right )^{4} + 73 \, \sin \left (d x + c\right )^{3} + 143 \, \sin \left (d x + c\right )^{2} - 17 \, \sin \left (d x + c\right ) - 32\right )}}{a \sin \left (d x + c\right )^{9} + a \sin \left (d x + c\right )^{8} - 4 \, a \sin \left (d x + c\right )^{7} - 4 \, a \sin \left (d x + c\right )^{6} + 6 \, a \sin \left (d x + c\right )^{5} + 6 \, a \sin \left (d x + c\right )^{4} - 4 \, a \sin \left (d x + c\right )^{3} - 4 \, a \sin \left (d x + c\right )^{2} + a \sin \left (d x + c\right ) + a} - \frac {15 \, \log \left (\sin \left (d x + c\right ) + 1\right )}{a} + \frac {15 \, \log \left (\sin \left (d x + c\right ) - 1\right )}{a}}{2560 \, d} \] Input:

integrate(sec(d*x+c)^6*tan(d*x+c)^3/(a+a*sin(d*x+c)),x, algorithm="maxima" 
)
 

Output:

1/2560*(2*(15*sin(d*x + c)^8 + 15*sin(d*x + c)^7 - 55*sin(d*x + c)^6 - 55* 
sin(d*x + c)^5 + 73*sin(d*x + c)^4 + 73*sin(d*x + c)^3 + 143*sin(d*x + c)^ 
2 - 17*sin(d*x + c) - 32)/(a*sin(d*x + c)^9 + a*sin(d*x + c)^8 - 4*a*sin(d 
*x + c)^7 - 4*a*sin(d*x + c)^6 + 6*a*sin(d*x + c)^5 + 6*a*sin(d*x + c)^4 - 
 4*a*sin(d*x + c)^3 - 4*a*sin(d*x + c)^2 + a*sin(d*x + c) + a) - 15*log(si 
n(d*x + c) + 1)/a + 15*log(sin(d*x + c) - 1)/a)/d
 

Giac [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.83 \[ \int \frac {\sec ^6(c+d x) \tan ^3(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {3 \, \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right )}{512 \, a d} + \frac {3 \, \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right )}{512 \, a d} + \frac {15 \, \sin \left (d x + c\right )^{8} + 15 \, \sin \left (d x + c\right )^{7} - 55 \, \sin \left (d x + c\right )^{6} - 55 \, \sin \left (d x + c\right )^{5} + 73 \, \sin \left (d x + c\right )^{4} + 73 \, \sin \left (d x + c\right )^{3} + 143 \, \sin \left (d x + c\right )^{2} - 17 \, \sin \left (d x + c\right ) - 32}{1280 \, a d {\left (\sin \left (d x + c\right ) + 1\right )}^{5} {\left (\sin \left (d x + c\right ) - 1\right )}^{4}} \] Input:

integrate(sec(d*x+c)^6*tan(d*x+c)^3/(a+a*sin(d*x+c)),x, algorithm="giac")
 

Output:

-3/512*log(abs(sin(d*x + c) + 1))/(a*d) + 3/512*log(abs(sin(d*x + c) - 1)) 
/(a*d) + 1/1280*(15*sin(d*x + c)^8 + 15*sin(d*x + c)^7 - 55*sin(d*x + c)^6 
 - 55*sin(d*x + c)^5 + 73*sin(d*x + c)^4 + 73*sin(d*x + c)^3 + 143*sin(d*x 
 + c)^2 - 17*sin(d*x + c) - 32)/(a*d*(sin(d*x + c) + 1)^5*(sin(d*x + c) - 
1)^4)
 

Mupad [B] (verification not implemented)

Time = 37.89 (sec) , antiderivative size = 496, normalized size of antiderivative = 2.85 \[ \int \frac {\sec ^6(c+d x) \tan ^3(c+d x)}{a+a \sin (c+d x)} \, dx =\text {Too large to display} \] Input:

int(tan(c + d*x)^3/(cos(c + d*x)^6*(a + a*sin(c + d*x))),x)
 

Output:

((3*tan(c/2 + (d*x)/2))/128 + (3*tan(c/2 + (d*x)/2)^2)/64 - (5*tan(c/2 + ( 
d*x)/2)^3)/32 + (233*tan(c/2 + (d*x)/2)^4)/64 + (323*tan(c/2 + (d*x)/2)^5) 
/160 + (2687*tan(c/2 + (d*x)/2)^6)/320 - (231*tan(c/2 + (d*x)/2)^7)/160 + 
(5349*tan(c/2 + (d*x)/2)^8)/320 + (353*tan(c/2 + (d*x)/2)^9)/64 + (5349*ta 
n(c/2 + (d*x)/2)^10)/320 - (231*tan(c/2 + (d*x)/2)^11)/160 + (2687*tan(c/2 
 + (d*x)/2)^12)/320 + (323*tan(c/2 + (d*x)/2)^13)/160 + (233*tan(c/2 + (d* 
x)/2)^14)/64 - (5*tan(c/2 + (d*x)/2)^15)/32 + (3*tan(c/2 + (d*x)/2)^16)/64 
 + (3*tan(c/2 + (d*x)/2)^17)/128)/(d*(a + 2*a*tan(c/2 + (d*x)/2) - 7*a*tan 
(c/2 + (d*x)/2)^2 - 16*a*tan(c/2 + (d*x)/2)^3 + 20*a*tan(c/2 + (d*x)/2)^4 
+ 56*a*tan(c/2 + (d*x)/2)^5 - 28*a*tan(c/2 + (d*x)/2)^6 - 112*a*tan(c/2 + 
(d*x)/2)^7 + 14*a*tan(c/2 + (d*x)/2)^8 + 140*a*tan(c/2 + (d*x)/2)^9 + 14*a 
*tan(c/2 + (d*x)/2)^10 - 112*a*tan(c/2 + (d*x)/2)^11 - 28*a*tan(c/2 + (d*x 
)/2)^12 + 56*a*tan(c/2 + (d*x)/2)^13 + 20*a*tan(c/2 + (d*x)/2)^14 - 16*a*t 
an(c/2 + (d*x)/2)^15 - 7*a*tan(c/2 + (d*x)/2)^16 + 2*a*tan(c/2 + (d*x)/2)^ 
17 + a*tan(c/2 + (d*x)/2)^18)) - (3*atanh(tan(c/2 + (d*x)/2)))/(128*a*d)
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 1016, normalized size of antiderivative = 5.84 \[ \int \frac {\sec ^6(c+d x) \tan ^3(c+d x)}{a+a \sin (c+d x)} \, dx =\text {Too large to display} \] Input:

int(sec(d*x+c)^6*tan(d*x+c)^3/(a+a*sin(d*x+c)),x)
 

Output:

(45*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**9 + 45*log(tan((c + d*x)/2) - 
1)*sin(c + d*x)**8 - 180*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**7 - 180*l 
og(tan((c + d*x)/2) - 1)*sin(c + d*x)**6 + 270*log(tan((c + d*x)/2) - 1)*s 
in(c + d*x)**5 + 270*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**4 - 180*log(t 
an((c + d*x)/2) - 1)*sin(c + d*x)**3 - 180*log(tan((c + d*x)/2) - 1)*sin(c 
 + d*x)**2 + 45*log(tan((c + d*x)/2) - 1)*sin(c + d*x) + 45*log(tan((c + d 
*x)/2) - 1) - 45*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**9 - 45*log(tan((c 
 + d*x)/2) + 1)*sin(c + d*x)**8 + 180*log(tan((c + d*x)/2) + 1)*sin(c + d* 
x)**7 + 180*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**6 - 270*log(tan((c + d 
*x)/2) + 1)*sin(c + d*x)**5 - 270*log(tan((c + d*x)/2) + 1)*sin(c + d*x)** 
4 + 180*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**3 + 180*log(tan((c + d*x)/ 
2) + 1)*sin(c + d*x)**2 - 45*log(tan((c + d*x)/2) + 1)*sin(c + d*x) - 45*l 
og(tan((c + d*x)/2) + 1) + 480*sec(c + d*x)**6*sin(c + d*x)**9*tan(c + d*x 
)**2 - 160*sec(c + d*x)**6*sin(c + d*x)**9 + 480*sec(c + d*x)**6*sin(c + d 
*x)**8*tan(c + d*x)**2 - 160*sec(c + d*x)**6*sin(c + d*x)**8 - 1920*sec(c 
+ d*x)**6*sin(c + d*x)**7*tan(c + d*x)**2 + 640*sec(c + d*x)**6*sin(c + d* 
x)**7 - 1920*sec(c + d*x)**6*sin(c + d*x)**6*tan(c + d*x)**2 + 640*sec(c + 
 d*x)**6*sin(c + d*x)**6 + 2880*sec(c + d*x)**6*sin(c + d*x)**5*tan(c + d* 
x)**2 - 960*sec(c + d*x)**6*sin(c + d*x)**5 + 2880*sec(c + d*x)**6*sin(c + 
 d*x)**4*tan(c + d*x)**2 - 960*sec(c + d*x)**6*sin(c + d*x)**4 - 1920*s...