\(\int \cos ^4(e+f x) (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^n \, dx\) [943]

Optimal result
Mathematica [F]
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F(-1)]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 121 \[ \int \cos ^4(e+f x) (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^n \, dx=-\frac {16 \sqrt {2} a^2 \operatorname {AppellF1}\left (\frac {5}{2},-\frac {7}{2},-n,\frac {7}{2},\frac {1}{2} (1-\sin (e+f x)),\frac {d (1-\sin (e+f x))}{c+d}\right ) \cos (e+f x) (1-\sin (e+f x))^2 (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n}}{5 f \sqrt {1+\sin (e+f x)}} \] Output:

-16/5*2^(1/2)*a^2*AppellF1(5/2,-n,-7/2,7/2,d*(1-sin(f*x+e))/(c+d),1/2-1/2* 
sin(f*x+e))*cos(f*x+e)*(1-sin(f*x+e))^2*(c+d*sin(f*x+e))^n/f/(1+sin(f*x+e) 
)^(1/2)/(((c+d*sin(f*x+e))/(c+d))^n)
 

Mathematica [F]

\[ \int \cos ^4(e+f x) (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^n \, dx=\int \cos ^4(e+f x) (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^n \, dx \] Input:

Integrate[Cos[e + f*x]^4*(a + a*Sin[e + f*x])^2*(c + d*Sin[e + f*x])^n,x]
 

Output:

Integrate[Cos[e + f*x]^4*(a + a*Sin[e + f*x])^2*(c + d*Sin[e + f*x])^n, x]
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {3042, 3396, 156, 155}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^4(e+f x) (a \sin (e+f x)+a)^2 (c+d \sin (e+f x))^n \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cos (e+f x)^4 (a \sin (e+f x)+a)^2 (c+d \sin (e+f x))^ndx\)

\(\Big \downarrow \) 3396

\(\displaystyle \frac {a^2 \cos (e+f x) \int (1-\sin (e+f x))^{3/2} (\sin (e+f x)+1)^{7/2} (c+d \sin (e+f x))^nd\sin (e+f x)}{f \sqrt {1-\sin (e+f x)} \sqrt {\sin (e+f x)+1}}\)

\(\Big \downarrow \) 156

\(\displaystyle \frac {a^2 \cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n} \int (1-\sin (e+f x))^{3/2} (\sin (e+f x)+1)^{7/2} \left (\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}\right )^nd\sin (e+f x)}{f \sqrt {1-\sin (e+f x)} \sqrt {\sin (e+f x)+1}}\)

\(\Big \downarrow \) 155

\(\displaystyle -\frac {16 \sqrt {2} a^2 (1-\sin (e+f x))^2 \cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n} \operatorname {AppellF1}\left (\frac {5}{2},-\frac {7}{2},-n,\frac {7}{2},\frac {1}{2} (1-\sin (e+f x)),\frac {d (1-\sin (e+f x))}{c+d}\right )}{5 f \sqrt {\sin (e+f x)+1}}\)

Input:

Int[Cos[e + f*x]^4*(a + a*Sin[e + f*x])^2*(c + d*Sin[e + f*x])^n,x]
 

Output:

(-16*Sqrt[2]*a^2*AppellF1[5/2, -7/2, -n, 7/2, (1 - Sin[e + f*x])/2, (d*(1 
- Sin[e + f*x]))/(c + d)]*Cos[e + f*x]*(1 - Sin[e + f*x])^2*(c + d*Sin[e + 
 f*x])^n)/(5*f*Sqrt[1 + Sin[e + f*x]]*((c + d*Sin[e + f*x])/(c + d))^n)
 

Defintions of rubi rules used

rule 155
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_)) 
^(p_), x_] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*Simplify[b/(b*c - a*d)]^n* 
Simplify[b/(b*e - a*f)]^p))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a + b*x)/ 
(b*c - a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, 
 m, n, p}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[Sim 
plify[b/(b*c - a*d)], 0] && GtQ[Simplify[b/(b*e - a*f)], 0] &&  !(GtQ[Simpl 
ify[d/(d*a - c*b)], 0] && GtQ[Simplify[d/(d*e - c*f)], 0] && SimplerQ[c + d 
*x, a + b*x]) &&  !(GtQ[Simplify[f/(f*a - e*b)], 0] && GtQ[Simplify[f/(f*c 
- e*d)], 0] && SimplerQ[e + f*x, a + b*x])
 

rule 156
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_)) 
^(p_), x_] :> Simp[(e + f*x)^FracPart[p]/(Simplify[b/(b*e - a*f)]^IntPart[p 
]*(b*((e + f*x)/(b*e - a*f)))^FracPart[p])   Int[(a + b*x)^m*(c + d*x)^n*Si 
mp[b*(e/(b*e - a*f)) + b*f*(x/(b*e - a*f)), x]^p, x], x] /; FreeQ[{a, b, c, 
 d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] &&  !IntegerQ[p] & 
& GtQ[Simplify[b/(b*c - a*d)], 0] &&  !GtQ[Simplify[b/(b*e - a*f)], 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3396
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a^m*(Cos[e 
 + f*x]/(f*Sqrt[1 + Sin[e + f*x]]*Sqrt[1 - Sin[e + f*x]]))   Subst[Int[(1 + 
 (b/a)*x)^(m + (p - 1)/2)*(1 - (b/a)*x)^((p - 1)/2)*(c + d*x)^n, x], x, Sin 
[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && I 
ntegerQ[p/2] && IntegerQ[m]
 
Maple [F]

\[\int \cos \left (f x +e \right )^{4} \left (a +a \sin \left (f x +e \right )\right )^{2} \left (c +d \sin \left (f x +e \right )\right )^{n}d x\]

Input:

int(cos(f*x+e)^4*(a+a*sin(f*x+e))^2*(c+d*sin(f*x+e))^n,x)
 

Output:

int(cos(f*x+e)^4*(a+a*sin(f*x+e))^2*(c+d*sin(f*x+e))^n,x)
 

Fricas [F]

\[ \int \cos ^4(e+f x) (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^n \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{2} {\left (d \sin \left (f x + e\right ) + c\right )}^{n} \cos \left (f x + e\right )^{4} \,d x } \] Input:

integrate(cos(f*x+e)^4*(a+a*sin(f*x+e))^2*(c+d*sin(f*x+e))^n,x, algorithm= 
"fricas")
 

Output:

integral(-(a^2*cos(f*x + e)^6 - 2*a^2*cos(f*x + e)^4*sin(f*x + e) - 2*a^2* 
cos(f*x + e)^4)*(d*sin(f*x + e) + c)^n, x)
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^4(e+f x) (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^n \, dx=\text {Timed out} \] Input:

integrate(cos(f*x+e)**4*(a+a*sin(f*x+e))**2*(c+d*sin(f*x+e))**n,x)
 

Output:

Timed out
 

Maxima [F(-1)]

Timed out. \[ \int \cos ^4(e+f x) (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^n \, dx=\text {Timed out} \] Input:

integrate(cos(f*x+e)^4*(a+a*sin(f*x+e))^2*(c+d*sin(f*x+e))^n,x, algorithm= 
"maxima")
 

Output:

Timed out
 

Giac [F(-1)]

Timed out. \[ \int \cos ^4(e+f x) (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^n \, dx=\text {Timed out} \] Input:

integrate(cos(f*x+e)^4*(a+a*sin(f*x+e))^2*(c+d*sin(f*x+e))^n,x, algorithm= 
"giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^4(e+f x) (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^n \, dx=\int {\cos \left (e+f\,x\right )}^4\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^2\,{\left (c+d\,\sin \left (e+f\,x\right )\right )}^n \,d x \] Input:

int(cos(e + f*x)^4*(a + a*sin(e + f*x))^2*(c + d*sin(e + f*x))^n,x)
 

Output:

int(cos(e + f*x)^4*(a + a*sin(e + f*x))^2*(c + d*sin(e + f*x))^n, x)
 

Reduce [F]

\[ \int \cos ^4(e+f x) (a+a \sin (e+f x))^2 (c+d \sin (e+f x))^n \, dx=a^{2} \left (\int \left (\sin \left (f x +e \right ) d +c \right )^{n} \cos \left (f x +e \right )^{4} \sin \left (f x +e \right )^{2}d x +2 \left (\int \left (\sin \left (f x +e \right ) d +c \right )^{n} \cos \left (f x +e \right )^{4} \sin \left (f x +e \right )d x \right )+\int \left (\sin \left (f x +e \right ) d +c \right )^{n} \cos \left (f x +e \right )^{4}d x \right ) \] Input:

int(cos(f*x+e)^4*(a+a*sin(f*x+e))^2*(c+d*sin(f*x+e))^n,x)
 

Output:

a**2*(int((sin(e + f*x)*d + c)**n*cos(e + f*x)**4*sin(e + f*x)**2,x) + 2*i 
nt((sin(e + f*x)*d + c)**n*cos(e + f*x)**4*sin(e + f*x),x) + int((sin(e + 
f*x)*d + c)**n*cos(e + f*x)**4,x))