\(\int \frac {\cos ^4(e+f x) (c+d \sin (e+f x))^n}{(a+a \sin (e+f x))^2} \, dx\) [946]

Optimal result
Mathematica [F]
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-2)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 110 \[ \int \frac {\cos ^4(e+f x) (c+d \sin (e+f x))^n}{(a+a \sin (e+f x))^2} \, dx=\frac {4 \sqrt {2} \operatorname {AppellF1}\left (\frac {1}{2},-\frac {3}{2},-n,\frac {3}{2},\frac {1}{2} (1+\sin (e+f x)),-\frac {d (1+\sin (e+f x))}{c-d}\right ) \cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c-d}\right )^{-n}}{a^2 f \sqrt {1-\sin (e+f x)}} \] Output:

4*2^(1/2)*AppellF1(1/2,-n,-3/2,3/2,-d*(1+sin(f*x+e))/(c-d),1/2+1/2*sin(f*x 
+e))*cos(f*x+e)*(c+d*sin(f*x+e))^n/a^2/f/(1-sin(f*x+e))^(1/2)/(((c+d*sin(f 
*x+e))/(c-d))^n)
 

Mathematica [F]

\[ \int \frac {\cos ^4(e+f x) (c+d \sin (e+f x))^n}{(a+a \sin (e+f x))^2} \, dx=\int \frac {\cos ^4(e+f x) (c+d \sin (e+f x))^n}{(a+a \sin (e+f x))^2} \, dx \] Input:

Integrate[(Cos[e + f*x]^4*(c + d*Sin[e + f*x])^n)/(a + a*Sin[e + f*x])^2,x 
]
 

Output:

Integrate[(Cos[e + f*x]^4*(c + d*Sin[e + f*x])^n)/(a + a*Sin[e + f*x])^2, 
x]
 

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.10, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {3042, 3393, 3042, 3263, 156, 155}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^4(e+f x) (c+d \sin (e+f x))^n}{(a \sin (e+f x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (e+f x)^4 (c+d \sin (e+f x))^n}{(a \sin (e+f x)+a)^2}dx\)

\(\Big \downarrow \) 3393

\(\displaystyle \frac {\int (a-a \sin (e+f x))^2 (c+d \sin (e+f x))^ndx}{a^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int (a-a \sin (e+f x))^2 (c+d \sin (e+f x))^ndx}{a^4}\)

\(\Big \downarrow \) 3263

\(\displaystyle \frac {\cos (e+f x) \int \frac {(1-\sin (e+f x))^{3/2} (c+d \sin (e+f x))^n}{\sqrt {\sin (e+f x)+1}}d\sin (e+f x)}{a^2 f \sqrt {1-\sin (e+f x)} \sqrt {\sin (e+f x)+1}}\)

\(\Big \downarrow \) 156

\(\displaystyle \frac {\cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n} \int \frac {(1-\sin (e+f x))^{3/2} \left (\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}\right )^n}{\sqrt {\sin (e+f x)+1}}d\sin (e+f x)}{a^2 f \sqrt {1-\sin (e+f x)} \sqrt {\sin (e+f x)+1}}\)

\(\Big \downarrow \) 155

\(\displaystyle -\frac {\sqrt {2} (1-\sin (e+f x))^2 \cos (e+f x) (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c+d}\right )^{-n} \operatorname {AppellF1}\left (\frac {5}{2},\frac {1}{2},-n,\frac {7}{2},\frac {1}{2} (1-\sin (e+f x)),\frac {d (1-\sin (e+f x))}{c+d}\right )}{5 a^2 f \sqrt {\sin (e+f x)+1}}\)

Input:

Int[(Cos[e + f*x]^4*(c + d*Sin[e + f*x])^n)/(a + a*Sin[e + f*x])^2,x]
 

Output:

-1/5*(Sqrt[2]*AppellF1[5/2, 1/2, -n, 7/2, (1 - Sin[e + f*x])/2, (d*(1 - Si 
n[e + f*x]))/(c + d)]*Cos[e + f*x]*(1 - Sin[e + f*x])^2*(c + d*Sin[e + f*x 
])^n)/(a^2*f*Sqrt[1 + Sin[e + f*x]]*((c + d*Sin[e + f*x])/(c + d))^n)
 

Defintions of rubi rules used

rule 155
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_)) 
^(p_), x_] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*Simplify[b/(b*c - a*d)]^n* 
Simplify[b/(b*e - a*f)]^p))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a + b*x)/ 
(b*c - a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, 
 m, n, p}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[Sim 
plify[b/(b*c - a*d)], 0] && GtQ[Simplify[b/(b*e - a*f)], 0] &&  !(GtQ[Simpl 
ify[d/(d*a - c*b)], 0] && GtQ[Simplify[d/(d*e - c*f)], 0] && SimplerQ[c + d 
*x, a + b*x]) &&  !(GtQ[Simplify[f/(f*a - e*b)], 0] && GtQ[Simplify[f/(f*c 
- e*d)], 0] && SimplerQ[e + f*x, a + b*x])
 

rule 156
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_)) 
^(p_), x_] :> Simp[(e + f*x)^FracPart[p]/(Simplify[b/(b*e - a*f)]^IntPart[p 
]*(b*((e + f*x)/(b*e - a*f)))^FracPart[p])   Int[(a + b*x)^m*(c + d*x)^n*Si 
mp[b*(e/(b*e - a*f)) + b*f*(x/(b*e - a*f)), x]^p, x], x] /; FreeQ[{a, b, c, 
 d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] &&  !IntegerQ[p] & 
& GtQ[Simplify[b/(b*c - a*d)], 0] &&  !GtQ[Simplify[b/(b*e - a*f)], 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3263
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.), x_Symbol] :> Simp[a^m*(Cos[e + f*x]/(f*Sqrt[1 + Sin[e + 
 f*x]]*Sqrt[1 - Sin[e + f*x]]))   Subst[Int[(1 + (b/a)*x)^(m - 1/2)*((c + d 
*x)^n/Sqrt[1 - (b/a)*x]), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, 
 f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] & 
& IntegerQ[m]
 

rule 3393
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a^(2*m) 
Int[(c + d*Sin[e + f*x])^n/(a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, c 
, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p] && EqQ[2*m + p, 0 
]
 
Maple [F]

\[\int \frac {\cos \left (f x +e \right )^{4} \left (c +d \sin \left (f x +e \right )\right )^{n}}{\left (a +a \sin \left (f x +e \right )\right )^{2}}d x\]

Input:

int(cos(f*x+e)^4*(c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^2,x)
 

Output:

int(cos(f*x+e)^4*(c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^2,x)
 

Fricas [F]

\[ \int \frac {\cos ^4(e+f x) (c+d \sin (e+f x))^n}{(a+a \sin (e+f x))^2} \, dx=\int { \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{n} \cos \left (f x + e\right )^{4}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{2}} \,d x } \] Input:

integrate(cos(f*x+e)^4*(c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^2,x, algorithm= 
"fricas")
 

Output:

integral(-(d*sin(f*x + e) + c)^n*cos(f*x + e)^4/(a^2*cos(f*x + e)^2 - 2*a^ 
2*sin(f*x + e) - 2*a^2), x)
 

Sympy [F(-2)]

Exception generated. \[ \int \frac {\cos ^4(e+f x) (c+d \sin (e+f x))^n}{(a+a \sin (e+f x))^2} \, dx=\text {Exception raised: HeuristicGCDFailed} \] Input:

integrate(cos(f*x+e)**4*(c+d*sin(f*x+e))**n/(a+a*sin(f*x+e))**2,x)
 

Output:

Exception raised: HeuristicGCDFailed >> no luck
 

Maxima [F]

\[ \int \frac {\cos ^4(e+f x) (c+d \sin (e+f x))^n}{(a+a \sin (e+f x))^2} \, dx=\int { \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{n} \cos \left (f x + e\right )^{4}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{2}} \,d x } \] Input:

integrate(cos(f*x+e)^4*(c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^2,x, algorithm= 
"maxima")
 

Output:

integrate((d*sin(f*x + e) + c)^n*cos(f*x + e)^4/(a*sin(f*x + e) + a)^2, x)
 

Giac [F]

\[ \int \frac {\cos ^4(e+f x) (c+d \sin (e+f x))^n}{(a+a \sin (e+f x))^2} \, dx=\int { \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{n} \cos \left (f x + e\right )^{4}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{2}} \,d x } \] Input:

integrate(cos(f*x+e)^4*(c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^2,x, algorithm= 
"giac")
 

Output:

integrate((d*sin(f*x + e) + c)^n*cos(f*x + e)^4/(a*sin(f*x + e) + a)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^4(e+f x) (c+d \sin (e+f x))^n}{(a+a \sin (e+f x))^2} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^4\,{\left (c+d\,\sin \left (e+f\,x\right )\right )}^n}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^2} \,d x \] Input:

int((cos(e + f*x)^4*(c + d*sin(e + f*x))^n)/(a + a*sin(e + f*x))^2,x)
 

Output:

int((cos(e + f*x)^4*(c + d*sin(e + f*x))^n)/(a + a*sin(e + f*x))^2, x)
 

Reduce [F]

\[ \int \frac {\cos ^4(e+f x) (c+d \sin (e+f x))^n}{(a+a \sin (e+f x))^2} \, dx=\frac {\int \frac {\left (\sin \left (f x +e \right ) d +c \right )^{n} \cos \left (f x +e \right )^{4}}{\sin \left (f x +e \right )^{2}+2 \sin \left (f x +e \right )+1}d x}{a^{2}} \] Input:

int(cos(f*x+e)^4*(c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^2,x)
 

Output:

int(((sin(e + f*x)*d + c)**n*cos(e + f*x)**4)/(sin(e + f*x)**2 + 2*sin(e + 
 f*x) + 1),x)/a**2