\(\int \cos ^7(c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx\) [950]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 134 \[ \int \cos ^7(c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx=\frac {8 (A-B) (a+a \sin (c+d x))^5}{5 a^4 d}-\frac {2 (3 A-5 B) (a+a \sin (c+d x))^6}{3 a^5 d}+\frac {6 (A-3 B) (a+a \sin (c+d x))^7}{7 a^6 d}-\frac {(A-7 B) (a+a \sin (c+d x))^8}{8 a^7 d}-\frac {B (a+a \sin (c+d x))^9}{9 a^8 d} \] Output:

8/5*(A-B)*(a+a*sin(d*x+c))^5/a^4/d-2/3*(3*A-5*B)*(a+a*sin(d*x+c))^6/a^5/d+ 
6/7*(A-3*B)*(a+a*sin(d*x+c))^7/a^6/d-1/8*(A-7*B)*(a+a*sin(d*x+c))^8/a^7/d- 
1/9*B*(a+a*sin(d*x+c))^9/a^8/d
 

Mathematica [A] (verified)

Time = 1.57 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.74 \[ \int \cos ^7(c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx=\frac {a \left (\frac {8}{5} (A-B) (1+\sin (c+d x))^5-\frac {2}{3} (3 A-5 B) (1+\sin (c+d x))^6+\frac {6}{7} (A-3 B) (1+\sin (c+d x))^7-\frac {1}{8} (A-7 B) (1+\sin (c+d x))^8-\frac {1}{9} B (1+\sin (c+d x))^9\right )}{d} \] Input:

Integrate[Cos[c + d*x]^7*(a + a*Sin[c + d*x])*(A + B*Sin[c + d*x]),x]
 

Output:

(a*((8*(A - B)*(1 + Sin[c + d*x])^5)/5 - (2*(3*A - 5*B)*(1 + Sin[c + d*x]) 
^6)/3 + (6*(A - 3*B)*(1 + Sin[c + d*x])^7)/7 - ((A - 7*B)*(1 + Sin[c + d*x 
])^8)/8 - (B*(1 + Sin[c + d*x])^9)/9))/d
 

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.90, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {3042, 3315, 27, 86, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^7(c+d x) (a \sin (c+d x)+a) (A+B \sin (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cos (c+d x)^7 (a \sin (c+d x)+a) (A+B \sin (c+d x))dx\)

\(\Big \downarrow \) 3315

\(\displaystyle \frac {\int \frac {(a-a \sin (c+d x))^3 (\sin (c+d x) a+a)^4 (a A+a B \sin (c+d x))}{a}d(a \sin (c+d x))}{a^7 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int (a-a \sin (c+d x))^3 (\sin (c+d x) a+a)^4 (a A+a B \sin (c+d x))d(a \sin (c+d x))}{a^8 d}\)

\(\Big \downarrow \) 86

\(\displaystyle \frac {\int \left (-B (\sin (c+d x) a+a)^8-a (A-7 B) (\sin (c+d x) a+a)^7+6 a^2 (A-3 B) (\sin (c+d x) a+a)^6-4 a^3 (3 A-5 B) (\sin (c+d x) a+a)^5+8 a^4 (A-B) (\sin (c+d x) a+a)^4\right )d(a \sin (c+d x))}{a^8 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {8}{5} a^4 (A-B) (a \sin (c+d x)+a)^5-\frac {2}{3} a^3 (3 A-5 B) (a \sin (c+d x)+a)^6+\frac {6}{7} a^2 (A-3 B) (a \sin (c+d x)+a)^7-\frac {1}{8} a (A-7 B) (a \sin (c+d x)+a)^8-\frac {1}{9} B (a \sin (c+d x)+a)^9}{a^8 d}\)

Input:

Int[Cos[c + d*x]^7*(a + a*Sin[c + d*x])*(A + B*Sin[c + d*x]),x]
 

Output:

((8*a^4*(A - B)*(a + a*Sin[c + d*x])^5)/5 - (2*a^3*(3*A - 5*B)*(a + a*Sin[ 
c + d*x])^6)/3 + (6*a^2*(A - 3*B)*(a + a*Sin[c + d*x])^7)/7 - (a*(A - 7*B) 
*(a + a*Sin[c + d*x])^8)/8 - (B*(a + a*Sin[c + d*x])^9)/9)/(a^8*d)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 86
Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_ 
.), x_] :> Int[ExpandIntegrand[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; 
 FreeQ[{a, b, c, d, e, f, n}, x] && ((ILtQ[n, 0] && ILtQ[p, 0]) || EqQ[p, 1 
] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p 
+ 1, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3315
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(b^p* 
f)   Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x)^n, 
 x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && Intege 
rQ[(p - 1)/2] && EqQ[a^2 - b^2, 0]
 
Maple [A] (verified)

Time = 109.07 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.05

method result size
derivativedivides \(-\frac {a \left (\frac {B \sin \left (d x +c \right )^{9}}{9}+\frac {\left (A +B \right ) \sin \left (d x +c \right )^{8}}{8}+\frac {\left (A -3 B \right ) \sin \left (d x +c \right )^{7}}{7}+\frac {\left (-3 B -3 A \right ) \sin \left (d x +c \right )^{6}}{6}+\frac {\left (3 B -3 A \right ) \sin \left (d x +c \right )^{5}}{5}+\frac {\left (3 B +3 A \right ) \sin \left (d x +c \right )^{4}}{4}+\frac {\left (3 A -B \right ) \sin \left (d x +c \right )^{3}}{3}+\frac {\left (-A -B \right ) \sin \left (d x +c \right )^{2}}{2}-A \sin \left (d x +c \right )\right )}{d}\) \(141\)
default \(-\frac {a \left (\frac {B \sin \left (d x +c \right )^{9}}{9}+\frac {\left (A +B \right ) \sin \left (d x +c \right )^{8}}{8}+\frac {\left (A -3 B \right ) \sin \left (d x +c \right )^{7}}{7}+\frac {\left (-3 B -3 A \right ) \sin \left (d x +c \right )^{6}}{6}+\frac {\left (3 B -3 A \right ) \sin \left (d x +c \right )^{5}}{5}+\frac {\left (3 B +3 A \right ) \sin \left (d x +c \right )^{4}}{4}+\frac {\left (3 A -B \right ) \sin \left (d x +c \right )^{3}}{3}+\frac {\left (-A -B \right ) \sin \left (d x +c \right )^{2}}{2}-A \sin \left (d x +c \right )\right )}{d}\) \(141\)
parallelrisch \(-\frac {\left (56 \left (A +B \right ) \cos \left (2 d x +2 c \right )+28 \left (A +B \right ) \cos \left (4 d x +4 c \right )+8 \left (A +B \right ) \cos \left (6 d x +6 c \right )+\left (A +B \right ) \cos \left (8 d x +8 c \right )+\frac {16 \left (-7 A +2 B \right ) \sin \left (5 d x +5 c \right )}{5}+\frac {4 \left (-4 A +5 B \right ) \sin \left (7 d x +7 c \right )}{7}-112 A \sin \left (3 d x +3 c \right )+\frac {4 B \sin \left (9 d x +9 c \right )}{9}+56 \left (-10 A -B \right ) \sin \left (d x +c \right )-93 A -93 B \right ) a}{1024 d}\) \(144\)
risch \(\frac {35 a A \sin \left (d x +c \right )}{64 d}+\frac {7 a B \sin \left (d x +c \right )}{128 d}-\frac {a B \sin \left (9 d x +9 c \right )}{2304 d}-\frac {a \cos \left (8 d x +8 c \right ) A}{1024 d}-\frac {a \cos \left (8 d x +8 c \right ) B}{1024 d}+\frac {\sin \left (7 d x +7 c \right ) a A}{448 d}-\frac {5 \sin \left (7 d x +7 c \right ) a B}{1792 d}-\frac {a \cos \left (6 d x +6 c \right ) A}{128 d}-\frac {a \cos \left (6 d x +6 c \right ) B}{128 d}+\frac {7 \sin \left (5 d x +5 c \right ) a A}{320 d}-\frac {\sin \left (5 d x +5 c \right ) a B}{160 d}-\frac {7 a \cos \left (4 d x +4 c \right ) A}{256 d}-\frac {7 a \cos \left (4 d x +4 c \right ) B}{256 d}+\frac {7 a A \sin \left (3 d x +3 c \right )}{64 d}-\frac {7 a \cos \left (2 d x +2 c \right ) A}{128 d}-\frac {7 a \cos \left (2 d x +2 c \right ) B}{128 d}\) \(252\)
norman \(\frac {\frac {\left (2 a A +2 a B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{d}+\frac {\left (2 a A +2 a B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{16}}{d}+\frac {14 \left (a A +a B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{d}+\frac {14 \left (a A +a B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}}{d}+\frac {14 \left (a A +a B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{d}+\frac {14 \left (a A +a B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{d}+\frac {2 \left (a A +a B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{d}+\frac {2 \left (a A +a B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{14}}{d}+\frac {2 a A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {2 a A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{17}}{d}+\frac {8 a \left (3 A +B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3 d}+\frac {8 a \left (3 A +B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{15}}{3 d}+\frac {8 a \left (17 A -2 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{5 d}+\frac {8 a \left (17 A -2 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{13}}{5 d}+\frac {8 a \left (221 A +79 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{35 d}+\frac {8 a \left (221 A +79 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{35 d}+\frac {4 a \left (4617 A -712 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{315 d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{9}}\) \(402\)
orering \(\text {Expression too large to display}\) \(3870\)

Input:

int(cos(d*x+c)^7*(a+a*sin(d*x+c))*(A+B*sin(d*x+c)),x,method=_RETURNVERBOSE 
)
 

Output:

-a/d*(1/9*B*sin(d*x+c)^9+1/8*(A+B)*sin(d*x+c)^8+1/7*(A-3*B)*sin(d*x+c)^7+1 
/6*(-3*B-3*A)*sin(d*x+c)^6+1/5*(3*B-3*A)*sin(d*x+c)^5+1/4*(3*B+3*A)*sin(d* 
x+c)^4+1/3*(3*A-B)*sin(d*x+c)^3+1/2*(-A-B)*sin(d*x+c)^2-A*sin(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.72 \[ \int \cos ^7(c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx=-\frac {315 \, {\left (A + B\right )} a \cos \left (d x + c\right )^{8} + 8 \, {\left (35 \, B a \cos \left (d x + c\right )^{8} - 5 \, {\left (9 \, A + B\right )} a \cos \left (d x + c\right )^{6} - 6 \, {\left (9 \, A + B\right )} a \cos \left (d x + c\right )^{4} - 8 \, {\left (9 \, A + B\right )} a \cos \left (d x + c\right )^{2} - 16 \, {\left (9 \, A + B\right )} a\right )} \sin \left (d x + c\right )}{2520 \, d} \] Input:

integrate(cos(d*x+c)^7*(a+a*sin(d*x+c))*(A+B*sin(d*x+c)),x, algorithm="fri 
cas")
 

Output:

-1/2520*(315*(A + B)*a*cos(d*x + c)^8 + 8*(35*B*a*cos(d*x + c)^8 - 5*(9*A 
+ B)*a*cos(d*x + c)^6 - 6*(9*A + B)*a*cos(d*x + c)^4 - 8*(9*A + B)*a*cos(d 
*x + c)^2 - 16*(9*A + B)*a)*sin(d*x + c))/d
 

Sympy [A] (verification not implemented)

Time = 0.93 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.70 \[ \int \cos ^7(c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx=\begin {cases} \frac {16 A a \sin ^{7}{\left (c + d x \right )}}{35 d} + \frac {8 A a \sin ^{5}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{5 d} + \frac {2 A a \sin ^{3}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{d} + \frac {A a \sin {\left (c + d x \right )} \cos ^{6}{\left (c + d x \right )}}{d} - \frac {A a \cos ^{8}{\left (c + d x \right )}}{8 d} + \frac {16 B a \sin ^{9}{\left (c + d x \right )}}{315 d} + \frac {8 B a \sin ^{7}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{35 d} + \frac {2 B a \sin ^{5}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{5 d} + \frac {B a \sin ^{3}{\left (c + d x \right )} \cos ^{6}{\left (c + d x \right )}}{3 d} - \frac {B a \cos ^{8}{\left (c + d x \right )}}{8 d} & \text {for}\: d \neq 0 \\x \left (A + B \sin {\left (c \right )}\right ) \left (a \sin {\left (c \right )} + a\right ) \cos ^{7}{\left (c \right )} & \text {otherwise} \end {cases} \] Input:

integrate(cos(d*x+c)**7*(a+a*sin(d*x+c))*(A+B*sin(d*x+c)),x)
 

Output:

Piecewise((16*A*a*sin(c + d*x)**7/(35*d) + 8*A*a*sin(c + d*x)**5*cos(c + d 
*x)**2/(5*d) + 2*A*a*sin(c + d*x)**3*cos(c + d*x)**4/d + A*a*sin(c + d*x)* 
cos(c + d*x)**6/d - A*a*cos(c + d*x)**8/(8*d) + 16*B*a*sin(c + d*x)**9/(31 
5*d) + 8*B*a*sin(c + d*x)**7*cos(c + d*x)**2/(35*d) + 2*B*a*sin(c + d*x)** 
5*cos(c + d*x)**4/(5*d) + B*a*sin(c + d*x)**3*cos(c + d*x)**6/(3*d) - B*a* 
cos(c + d*x)**8/(8*d), Ne(d, 0)), (x*(A + B*sin(c))*(a*sin(c) + a)*cos(c)* 
*7, True))
 

Maxima [A] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.00 \[ \int \cos ^7(c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx=-\frac {280 \, B a \sin \left (d x + c\right )^{9} + 315 \, {\left (A + B\right )} a \sin \left (d x + c\right )^{8} + 360 \, {\left (A - 3 \, B\right )} a \sin \left (d x + c\right )^{7} - 1260 \, {\left (A + B\right )} a \sin \left (d x + c\right )^{6} - 1512 \, {\left (A - B\right )} a \sin \left (d x + c\right )^{5} + 1890 \, {\left (A + B\right )} a \sin \left (d x + c\right )^{4} + 840 \, {\left (3 \, A - B\right )} a \sin \left (d x + c\right )^{3} - 1260 \, {\left (A + B\right )} a \sin \left (d x + c\right )^{2} - 2520 \, A a \sin \left (d x + c\right )}{2520 \, d} \] Input:

integrate(cos(d*x+c)^7*(a+a*sin(d*x+c))*(A+B*sin(d*x+c)),x, algorithm="max 
ima")
 

Output:

-1/2520*(280*B*a*sin(d*x + c)^9 + 315*(A + B)*a*sin(d*x + c)^8 + 360*(A - 
3*B)*a*sin(d*x + c)^7 - 1260*(A + B)*a*sin(d*x + c)^6 - 1512*(A - B)*a*sin 
(d*x + c)^5 + 1890*(A + B)*a*sin(d*x + c)^4 + 840*(3*A - B)*a*sin(d*x + c) 
^3 - 1260*(A + B)*a*sin(d*x + c)^2 - 2520*A*a*sin(d*x + c))/d
                                                                                    
                                                                                    
 

Giac [A] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.46 \[ \int \cos ^7(c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx=-\frac {280 \, B a \sin \left (d x + c\right )^{9} + 315 \, A a \sin \left (d x + c\right )^{8} + 315 \, B a \sin \left (d x + c\right )^{8} + 360 \, A a \sin \left (d x + c\right )^{7} - 1080 \, B a \sin \left (d x + c\right )^{7} - 1260 \, A a \sin \left (d x + c\right )^{6} - 1260 \, B a \sin \left (d x + c\right )^{6} - 1512 \, A a \sin \left (d x + c\right )^{5} + 1512 \, B a \sin \left (d x + c\right )^{5} + 1890 \, A a \sin \left (d x + c\right )^{4} + 1890 \, B a \sin \left (d x + c\right )^{4} + 2520 \, A a \sin \left (d x + c\right )^{3} - 840 \, B a \sin \left (d x + c\right )^{3} - 1260 \, A a \sin \left (d x + c\right )^{2} - 1260 \, B a \sin \left (d x + c\right )^{2} - 2520 \, A a \sin \left (d x + c\right )}{2520 \, d} \] Input:

integrate(cos(d*x+c)^7*(a+a*sin(d*x+c))*(A+B*sin(d*x+c)),x, algorithm="gia 
c")
 

Output:

-1/2520*(280*B*a*sin(d*x + c)^9 + 315*A*a*sin(d*x + c)^8 + 315*B*a*sin(d*x 
 + c)^8 + 360*A*a*sin(d*x + c)^7 - 1080*B*a*sin(d*x + c)^7 - 1260*A*a*sin( 
d*x + c)^6 - 1260*B*a*sin(d*x + c)^6 - 1512*A*a*sin(d*x + c)^5 + 1512*B*a* 
sin(d*x + c)^5 + 1890*A*a*sin(d*x + c)^4 + 1890*B*a*sin(d*x + c)^4 + 2520* 
A*a*sin(d*x + c)^3 - 840*B*a*sin(d*x + c)^3 - 1260*A*a*sin(d*x + c)^2 - 12 
60*B*a*sin(d*x + c)^2 - 2520*A*a*sin(d*x + c))/d
 

Mupad [B] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.00 \[ \int \cos ^7(c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx=-\frac {\frac {B\,a\,{\sin \left (c+d\,x\right )}^9}{9}+\frac {a\,\left (A+B\right )\,{\sin \left (c+d\,x\right )}^8}{8}+\frac {a\,\left (A-3\,B\right )\,{\sin \left (c+d\,x\right )}^7}{7}-\frac {a\,\left (A+B\right )\,{\sin \left (c+d\,x\right )}^6}{2}-\frac {3\,a\,\left (A-B\right )\,{\sin \left (c+d\,x\right )}^5}{5}+\frac {3\,a\,\left (A+B\right )\,{\sin \left (c+d\,x\right )}^4}{4}+\frac {a\,\left (3\,A-B\right )\,{\sin \left (c+d\,x\right )}^3}{3}-\frac {a\,\left (A+B\right )\,{\sin \left (c+d\,x\right )}^2}{2}-A\,a\,\sin \left (c+d\,x\right )}{d} \] Input:

int(cos(c + d*x)^7*(A + B*sin(c + d*x))*(a + a*sin(c + d*x)),x)
 

Output:

-((a*sin(c + d*x)^3*(3*A - B))/3 - A*a*sin(c + d*x) - (a*sin(c + d*x)^2*(A 
 + B))/2 + (3*a*sin(c + d*x)^4*(A + B))/4 - (a*sin(c + d*x)^6*(A + B))/2 + 
 (a*sin(c + d*x)^8*(A + B))/8 - (3*a*sin(c + d*x)^5*(A - B))/5 + (a*sin(c 
+ d*x)^7*(A - 3*B))/7 + (B*a*sin(c + d*x)^9)/9)/d
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 177, normalized size of antiderivative = 1.32 \[ \int \cos ^7(c+d x) (a+a \sin (c+d x)) (A+B \sin (c+d x)) \, dx=\frac {\sin \left (d x +c \right ) a \left (-280 \sin \left (d x +c \right )^{8} b -315 \sin \left (d x +c \right )^{7} a -315 \sin \left (d x +c \right )^{7} b -360 \sin \left (d x +c \right )^{6} a +1080 \sin \left (d x +c \right )^{6} b +1260 \sin \left (d x +c \right )^{5} a +1260 \sin \left (d x +c \right )^{5} b +1512 \sin \left (d x +c \right )^{4} a -1512 \sin \left (d x +c \right )^{4} b -1890 \sin \left (d x +c \right )^{3} a -1890 \sin \left (d x +c \right )^{3} b -2520 \sin \left (d x +c \right )^{2} a +840 \sin \left (d x +c \right )^{2} b +1260 \sin \left (d x +c \right ) a +1260 \sin \left (d x +c \right ) b +2520 a \right )}{2520 d} \] Input:

int(cos(d*x+c)^7*(a+a*sin(d*x+c))*(A+B*sin(d*x+c)),x)
 

Output:

(sin(c + d*x)*a*( - 280*sin(c + d*x)**8*b - 315*sin(c + d*x)**7*a - 315*si 
n(c + d*x)**7*b - 360*sin(c + d*x)**6*a + 1080*sin(c + d*x)**6*b + 1260*si 
n(c + d*x)**5*a + 1260*sin(c + d*x)**5*b + 1512*sin(c + d*x)**4*a - 1512*s 
in(c + d*x)**4*b - 1890*sin(c + d*x)**3*a - 1890*sin(c + d*x)**3*b - 2520* 
sin(c + d*x)**2*a + 840*sin(c + d*x)**2*b + 1260*sin(c + d*x)*a + 1260*sin 
(c + d*x)*b + 2520*a))/(2520*d)