\(\int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx\) [87]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 36, antiderivative size = 126 \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx=-\frac {a (A-7 B) \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{8 \sqrt {2} c^{5/2} f}+\frac {a (A+B) \cos (e+f x)}{2 f (c-c \sin (e+f x))^{5/2}}-\frac {a (A+9 B) \cos (e+f x)}{8 c f (c-c \sin (e+f x))^{3/2}} \] Output:

-1/16*a*(A-7*B)*arctanh(1/2*c^(1/2)*cos(f*x+e)*2^(1/2)/(c-c*sin(f*x+e))^(1 
/2))*2^(1/2)/c^(5/2)/f+1/2*a*(A+B)*cos(f*x+e)/f/(c-c*sin(f*x+e))^(5/2)-1/8 
*a*(A+9*B)*cos(f*x+e)/c/f/(c-c*sin(f*x+e))^(3/2)
 

Mathematica [A] (verified)

Time = 8.01 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.58 \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx=-\frac {a (-1+\sin (e+f x)) (1+\sin (e+f x)) \left (\sqrt {2} (A-7 B) \arctan \left (\frac {\sqrt {-c (1+\sin (e+f x))}}{\sqrt {2} \sqrt {c}}\right ) \sec (e+f x) \sqrt {-c (1+\sin (e+f x))}+\frac {2 \sqrt {c} \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (3 A-5 B+(A+9 B) \sin (e+f x))}{\left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^5}\right )}{16 c^{5/2} f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2 \sqrt {c-c \sin (e+f x)}} \] Input:

Integrate[((a + a*Sin[e + f*x])*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x]) 
^(5/2),x]
 

Output:

-1/16*(a*(-1 + Sin[e + f*x])*(1 + Sin[e + f*x])*(Sqrt[2]*(A - 7*B)*ArcTan[ 
Sqrt[-(c*(1 + Sin[e + f*x]))]/(Sqrt[2]*Sqrt[c])]*Sec[e + f*x]*Sqrt[-(c*(1 
+ Sin[e + f*x]))] + (2*Sqrt[c]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(3*A 
- 5*B + (A + 9*B)*Sin[e + f*x]))/(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^5)) 
/(c^(5/2)*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2*Sqrt[c - c*Sin[e + f*x 
]])
 

Rubi [A] (verified)

Time = 0.73 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.07, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.278, Rules used = {3042, 3446, 3042, 3336, 25, 3042, 3229, 3042, 3128, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sin (e+f x)+a) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sin (e+f x)+a) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}}dx\)

\(\Big \downarrow \) 3446

\(\displaystyle a c \int \frac {\cos ^2(e+f x) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{7/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a c \int \frac {\cos (e+f x)^2 (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{7/2}}dx\)

\(\Big \downarrow \) 3336

\(\displaystyle a c \left (\frac {\int -\frac {(A+5 B) c+4 B \sin (e+f x) c}{(c-c \sin (e+f x))^{3/2}}dx}{4 c^3}+\frac {(A+B) \cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle a c \left (\frac {(A+B) \cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\int \frac {(A+5 B) c+4 B \sin (e+f x) c}{(c-c \sin (e+f x))^{3/2}}dx}{4 c^3}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a c \left (\frac {(A+B) \cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\int \frac {(A+5 B) c+4 B \sin (e+f x) c}{(c-c \sin (e+f x))^{3/2}}dx}{4 c^3}\right )\)

\(\Big \downarrow \) 3229

\(\displaystyle a c \left (\frac {(A+B) \cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\frac {1}{4} (A-7 B) \int \frac {1}{\sqrt {c-c \sin (e+f x)}}dx+\frac {c (A+9 B) \cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}}{4 c^3}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a c \left (\frac {(A+B) \cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\frac {1}{4} (A-7 B) \int \frac {1}{\sqrt {c-c \sin (e+f x)}}dx+\frac {c (A+9 B) \cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}}{4 c^3}\right )\)

\(\Big \downarrow \) 3128

\(\displaystyle a c \left (\frac {(A+B) \cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\frac {c (A+9 B) \cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}-\frac {(A-7 B) \int \frac {1}{2 c-\frac {c^2 \cos ^2(e+f x)}{c-c \sin (e+f x)}}d\left (-\frac {c \cos (e+f x)}{\sqrt {c-c \sin (e+f x)}}\right )}{2 f}}{4 c^3}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle a c \left (\frac {(A+B) \cos (e+f x)}{2 c f (c-c \sin (e+f x))^{5/2}}-\frac {\frac {(A-7 B) \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{2 \sqrt {2} \sqrt {c} f}+\frac {c (A+9 B) \cos (e+f x)}{2 f (c-c \sin (e+f x))^{3/2}}}{4 c^3}\right )\)

Input:

Int[((a + a*Sin[e + f*x])*(A + B*Sin[e + f*x]))/(c - c*Sin[e + f*x])^(5/2) 
,x]
 

Output:

a*c*(((A + B)*Cos[e + f*x])/(2*c*f*(c - c*Sin[e + f*x])^(5/2)) - (((A - 7* 
B)*ArcTanh[(Sqrt[c]*Cos[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sin[e + f*x]])])/(2* 
Sqrt[2]*Sqrt[c]*f) + ((A + 9*B)*c*Cos[e + f*x])/(2*f*(c - c*Sin[e + f*x])^ 
(3/2)))/(4*c^3))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3229
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*Cos[e + f*x]*((a + b*Sin[e + f* 
x])^m/(a*f*(2*m + 1))), x] + Simp[(a*d*m + b*c*(m + 1))/(a*b*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && 
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]
 

rule 3336
Int[cos[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*( 
(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[2*(b*c - a*d)*Cos 
[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(2*m + 3))), x] + Simp[1/(b^ 
3*(2*m + 3))   Int[(a + b*Sin[e + f*x])^(m + 2)*(b*c + 2*a*d*(m + 1) - b*d* 
(2*m + 3)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 
- b^2, 0] && LtQ[m, -3/2]
 

rule 3446
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Si 
mp[a^m*c^m   Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A + B*Sin 
[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a* 
d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] 
&& GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(266\) vs. \(2(107)=214\).

Time = 0.59 (sec) , antiderivative size = 267, normalized size of antiderivative = 2.12

method result size
default \(-\frac {a \left (\operatorname {arctanh}\left (\frac {\sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sqrt {2}\, c^{2} \left (A -7 B \right ) \cos \left (f x +e \right )^{2}+2 \sin \left (f x +e \right ) \operatorname {arctanh}\left (\frac {\sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sqrt {2}\, c^{2} \left (A -7 B \right )+2 A \left (c +c \sin \left (f x +e \right )\right )^{\frac {3}{2}} \sqrt {c}+4 A \sqrt {c +c \sin \left (f x +e \right )}\, c^{\frac {3}{2}}-2 A \,\operatorname {arctanh}\left (\frac {\sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sqrt {2}\, c^{2}+18 B \left (c +c \sin \left (f x +e \right )\right )^{\frac {3}{2}} \sqrt {c}-28 B \sqrt {c +c \sin \left (f x +e \right )}\, c^{\frac {3}{2}}+14 B \,\operatorname {arctanh}\left (\frac {\sqrt {c +c \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sqrt {2}\, c^{2}\right ) \sqrt {c \left (1+\sin \left (f x +e \right )\right )}}{16 c^{\frac {9}{2}} \left (\sin \left (f x +e \right )-1\right ) \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(267\)
parts \(\frac {A a \left (-3 \,\operatorname {arctanh}\left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sqrt {2}\, \sin \left (f x +e \right )^{2} c^{2}+6 \sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, c^{\frac {3}{2}} \sin \left (f x +e \right )+6 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2} \sin \left (f x +e \right )-14 \sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, c^{\frac {3}{2}}-3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2}\right ) \sqrt {c \left (1+\sin \left (f x +e \right )\right )}}{32 c^{\frac {9}{2}} \left (\sin \left (f x +e \right )-1\right ) \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}-\frac {B a \left (19 \,\operatorname {arctanh}\left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sqrt {2}\, \sin \left (f x +e \right )^{2} c^{2}-38 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2} \sin \left (f x +e \right )+26 \left (c \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {3}{2}} \sqrt {c}+19 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{2}-44 \sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, c^{\frac {3}{2}}\right ) \sqrt {c \left (1+\sin \left (f x +e \right )\right )}}{32 c^{\frac {9}{2}} \left (\sin \left (f x +e \right )-1\right ) \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}+\frac {a \left (A +B \right ) \left (5 \,\operatorname {arctanh}\left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sqrt {2}\, \sin \left (f x +e \right )^{2} c^{3}+12 \sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, c^{\frac {5}{2}}-10 \left (c \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {3}{2}} c^{\frac {3}{2}}-10 \,\operatorname {arctanh}\left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sqrt {2}\, \sin \left (f x +e \right ) c^{3}+5 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) c^{3}\right ) \sqrt {c \left (1+\sin \left (f x +e \right )\right )}}{32 c^{\frac {11}{2}} \left (\sin \left (f x +e \right )-1\right ) \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(577\)

Input:

int((a+a*sin(f*x+e))*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x,method=_RET 
URNVERBOSE)
 

Output:

-1/16/c^(9/2)*a*(arctanh(1/2*(c+c*sin(f*x+e))^(1/2)*2^(1/2)/c^(1/2))*2^(1/ 
2)*c^2*(A-7*B)*cos(f*x+e)^2+2*sin(f*x+e)*arctanh(1/2*(c+c*sin(f*x+e))^(1/2 
)*2^(1/2)/c^(1/2))*2^(1/2)*c^2*(A-7*B)+2*A*(c+c*sin(f*x+e))^(3/2)*c^(1/2)+ 
4*A*(c+c*sin(f*x+e))^(1/2)*c^(3/2)-2*A*arctanh(1/2*(c+c*sin(f*x+e))^(1/2)* 
2^(1/2)/c^(1/2))*2^(1/2)*c^2+18*B*(c+c*sin(f*x+e))^(3/2)*c^(1/2)-28*B*(c+c 
*sin(f*x+e))^(1/2)*c^(3/2)+14*B*arctanh(1/2*(c+c*sin(f*x+e))^(1/2)*2^(1/2) 
/c^(1/2))*2^(1/2)*c^2)*(c*(1+sin(f*x+e)))^(1/2)/(sin(f*x+e)-1)/cos(f*x+e)/ 
(c-c*sin(f*x+e))^(1/2)/f
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 394 vs. \(2 (107) = 214\).

Time = 0.14 (sec) , antiderivative size = 394, normalized size of antiderivative = 3.13 \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx=-\frac {\sqrt {2} {\left ({\left (A - 7 \, B\right )} a \cos \left (f x + e\right )^{3} + 3 \, {\left (A - 7 \, B\right )} a \cos \left (f x + e\right )^{2} - 2 \, {\left (A - 7 \, B\right )} a \cos \left (f x + e\right ) - 4 \, {\left (A - 7 \, B\right )} a - {\left ({\left (A - 7 \, B\right )} a \cos \left (f x + e\right )^{2} - 2 \, {\left (A - 7 \, B\right )} a \cos \left (f x + e\right ) - 4 \, {\left (A - 7 \, B\right )} a\right )} \sin \left (f x + e\right )\right )} \sqrt {c} \log \left (-\frac {c \cos \left (f x + e\right )^{2} + 2 \, \sqrt {2} \sqrt {-c \sin \left (f x + e\right ) + c} \sqrt {c} {\left (\cos \left (f x + e\right ) + \sin \left (f x + e\right ) + 1\right )} + 3 \, c \cos \left (f x + e\right ) + {\left (c \cos \left (f x + e\right ) - 2 \, c\right )} \sin \left (f x + e\right ) + 2 \, c}{\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right ) - 4 \, {\left ({\left (A + 9 \, B\right )} a \cos \left (f x + e\right )^{2} - {\left (3 \, A - 5 \, B\right )} a \cos \left (f x + e\right ) - 4 \, {\left (A + B\right )} a - {\left ({\left (A + 9 \, B\right )} a \cos \left (f x + e\right ) + 4 \, {\left (A + B\right )} a\right )} \sin \left (f x + e\right )\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{32 \, {\left (c^{3} f \cos \left (f x + e\right )^{3} + 3 \, c^{3} f \cos \left (f x + e\right )^{2} - 2 \, c^{3} f \cos \left (f x + e\right ) - 4 \, c^{3} f - {\left (c^{3} f \cos \left (f x + e\right )^{2} - 2 \, c^{3} f \cos \left (f x + e\right ) - 4 \, c^{3} f\right )} \sin \left (f x + e\right )\right )}} \] Input:

integrate((a+a*sin(f*x+e))*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x, algo 
rithm="fricas")
 

Output:

-1/32*(sqrt(2)*((A - 7*B)*a*cos(f*x + e)^3 + 3*(A - 7*B)*a*cos(f*x + e)^2 
- 2*(A - 7*B)*a*cos(f*x + e) - 4*(A - 7*B)*a - ((A - 7*B)*a*cos(f*x + e)^2 
 - 2*(A - 7*B)*a*cos(f*x + e) - 4*(A - 7*B)*a)*sin(f*x + e))*sqrt(c)*log(- 
(c*cos(f*x + e)^2 + 2*sqrt(2)*sqrt(-c*sin(f*x + e) + c)*sqrt(c)*(cos(f*x + 
 e) + sin(f*x + e) + 1) + 3*c*cos(f*x + e) + (c*cos(f*x + e) - 2*c)*sin(f* 
x + e) + 2*c)/(cos(f*x + e)^2 + (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x 
+ e) - 2)) - 4*((A + 9*B)*a*cos(f*x + e)^2 - (3*A - 5*B)*a*cos(f*x + e) - 
4*(A + B)*a - ((A + 9*B)*a*cos(f*x + e) + 4*(A + B)*a)*sin(f*x + e))*sqrt( 
-c*sin(f*x + e) + c))/(c^3*f*cos(f*x + e)^3 + 3*c^3*f*cos(f*x + e)^2 - 2*c 
^3*f*cos(f*x + e) - 4*c^3*f - (c^3*f*cos(f*x + e)^2 - 2*c^3*f*cos(f*x + e) 
 - 4*c^3*f)*sin(f*x + e))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate((a+a*sin(f*x+e))*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))**(5/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx=\int { \frac {{\left (B \sin \left (f x + e\right ) + A\right )} {\left (a \sin \left (f x + e\right ) + a\right )}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((a+a*sin(f*x+e))*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x, algo 
rithm="maxima")
 

Output:

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)/(-c*sin(f*x + e) + c)^ 
(5/2), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+a*sin(f*x+e))*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x, algo 
rithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx=\int \frac {\left (A+B\,\sin \left (e+f\,x\right )\right )\,\left (a+a\,\sin \left (e+f\,x\right )\right )}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \] Input:

int(((A + B*sin(e + f*x))*(a + a*sin(e + f*x)))/(c - c*sin(e + f*x))^(5/2) 
,x)
                                                                                    
                                                                                    
 

Output:

int(((A + B*sin(e + f*x))*(a + a*sin(e + f*x)))/(c - c*sin(e + f*x))^(5/2) 
, x)
 

Reduce [F]

\[ \int \frac {(a+a \sin (e+f x)) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^{5/2}} \, dx=-\frac {\sqrt {c}\, a \left (\left (\int \frac {\sqrt {-\sin \left (f x +e \right )+1}}{\sin \left (f x +e \right )^{3}-3 \sin \left (f x +e \right )^{2}+3 \sin \left (f x +e \right )-1}d x \right ) a +\left (\int \frac {\sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{2}}{\sin \left (f x +e \right )^{3}-3 \sin \left (f x +e \right )^{2}+3 \sin \left (f x +e \right )-1}d x \right ) b +\left (\int \frac {\sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )}{\sin \left (f x +e \right )^{3}-3 \sin \left (f x +e \right )^{2}+3 \sin \left (f x +e \right )-1}d x \right ) a +\left (\int \frac {\sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )}{\sin \left (f x +e \right )^{3}-3 \sin \left (f x +e \right )^{2}+3 \sin \left (f x +e \right )-1}d x \right ) b \right )}{c^{3}} \] Input:

int((a+a*sin(f*x+e))*(A+B*sin(f*x+e))/(c-c*sin(f*x+e))^(5/2),x)
 

Output:

( - sqrt(c)*a*(int(sqrt( - sin(e + f*x) + 1)/(sin(e + f*x)**3 - 3*sin(e + 
f*x)**2 + 3*sin(e + f*x) - 1),x)*a + int((sqrt( - sin(e + f*x) + 1)*sin(e 
+ f*x)**2)/(sin(e + f*x)**3 - 3*sin(e + f*x)**2 + 3*sin(e + f*x) - 1),x)*b 
 + int((sqrt( - sin(e + f*x) + 1)*sin(e + f*x))/(sin(e + f*x)**3 - 3*sin(e 
 + f*x)**2 + 3*sin(e + f*x) - 1),x)*a + int((sqrt( - sin(e + f*x) + 1)*sin 
(e + f*x))/(sin(e + f*x)**3 - 3*sin(e + f*x)**2 + 3*sin(e + f*x) - 1),x)*b 
))/c**3