\(\int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) \sqrt {c-c \sin (e+f x)}} \, dx\) [112]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 38, antiderivative size = 91 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) \sqrt {c-c \sin (e+f x)}} \, dx=\frac {(A+B) \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{\sqrt {2} a \sqrt {c} f}-\frac {(A-B) \sec (e+f x) \sqrt {c-c \sin (e+f x)}}{a c f} \] Output:

1/2*(A+B)*arctanh(1/2*c^(1/2)*cos(f*x+e)*2^(1/2)/(c-c*sin(f*x+e))^(1/2))*2 
^(1/2)/a/c^(1/2)/f-(A-B)*sec(f*x+e)*(c-c*sin(f*x+e))^(1/2)/a/c/f
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.83 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.54 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) \sqrt {c-c \sin (e+f x)}} \, dx=\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (-A+B-(1+i) \sqrt [4]{-1} (A+B) \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt [4]{-1} \left (1+\tan \left (\frac {1}{4} (e+f x)\right )\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )\right )}{a f (1+\sin (e+f x)) \sqrt {c-c \sin (e+f x)}} \] Input:

Integrate[(A + B*Sin[e + f*x])/((a + a*Sin[e + f*x])*Sqrt[c - c*Sin[e + f* 
x]]),x]
 

Output:

((Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2 
])*(-A + B - (1 + I)*(-1)^(1/4)*(A + B)*ArcTan[(1/2 + I/2)*(-1)^(1/4)*(1 + 
 Tan[(e + f*x)/4])]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])))/(a*f*(1 + Sin[ 
e + f*x])*Sqrt[c - c*Sin[e + f*x]])
 

Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.98, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.184, Rules used = {3042, 3446, 3042, 3334, 3042, 3128, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sin (e+f x)}{(a \sin (e+f x)+a) \sqrt {c-c \sin (e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin (e+f x)}{(a \sin (e+f x)+a) \sqrt {c-c \sin (e+f x)}}dx\)

\(\Big \downarrow \) 3446

\(\displaystyle \frac {\int \sec ^2(e+f x) (A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}dx}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{\cos (e+f x)^2}dx}{a c}\)

\(\Big \downarrow \) 3334

\(\displaystyle \frac {\frac {1}{2} c (A+B) \int \frac {1}{\sqrt {c-c \sin (e+f x)}}dx-\frac {(A-B) \sec (e+f x) \sqrt {c-c \sin (e+f x)}}{f}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{2} c (A+B) \int \frac {1}{\sqrt {c-c \sin (e+f x)}}dx-\frac {(A-B) \sec (e+f x) \sqrt {c-c \sin (e+f x)}}{f}}{a c}\)

\(\Big \downarrow \) 3128

\(\displaystyle \frac {-\frac {c (A+B) \int \frac {1}{2 c-\frac {c^2 \cos ^2(e+f x)}{c-c \sin (e+f x)}}d\left (-\frac {c \cos (e+f x)}{\sqrt {c-c \sin (e+f x)}}\right )}{f}-\frac {(A-B) \sec (e+f x) \sqrt {c-c \sin (e+f x)}}{f}}{a c}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\sqrt {c} (A+B) \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{\sqrt {2} f}-\frac {(A-B) \sec (e+f x) \sqrt {c-c \sin (e+f x)}}{f}}{a c}\)

Input:

Int[(A + B*Sin[e + f*x])/((a + a*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]]),x 
]
 

Output:

(((A + B)*Sqrt[c]*ArcTanh[(Sqrt[c]*Cos[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sin[e 
 + f*x]])])/(Sqrt[2]*f) - ((A - B)*Sec[e + f*x]*Sqrt[c - c*Sin[e + f*x]])/ 
f)/(a*c)
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3334
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(b* 
c + a*d))*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(p + 1))) 
, x] + Simp[b*((a*d*m + b*c*(m + p + 1))/(a*g^2*(p + 1)))   Int[(g*Cos[e + 
f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, c, d, e, 
 f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, -1] && LtQ[p, -1]
 

rule 3446
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Si 
mp[a^m*c^m   Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A + B*Sin 
[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a* 
d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] 
&& GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))
 
Maple [A] (verified)

Time = 0.32 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.43

method result size
default \(-\frac {\left (\sin \left (f x +e \right )-1\right ) \left (\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, A +\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) \sqrt {c \left (1+\sin \left (f x +e \right )\right )}\, B -2 \sqrt {c}\, A +2 \sqrt {c}\, B \right )}{2 a \sqrt {c}\, \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(130\)

Input:

int((A+B*sin(f*x+e))/(a+a*sin(f*x+e))/(c-c*sin(f*x+e))^(1/2),x,method=_RET 
URNVERBOSE)
 

Output:

-1/2/a*(sin(f*x+e)-1)*(2^(1/2)*arctanh(1/2*(c*(1+sin(f*x+e)))^(1/2)*2^(1/2 
)/c^(1/2))*(c*(1+sin(f*x+e)))^(1/2)*A+2^(1/2)*arctanh(1/2*(c*(1+sin(f*x+e) 
))^(1/2)*2^(1/2)/c^(1/2))*(c*(1+sin(f*x+e)))^(1/2)*B-2*c^(1/2)*A+2*c^(1/2) 
*B)/c^(1/2)/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.78 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) \sqrt {c-c \sin (e+f x)}} \, dx=\frac {\sqrt {2} {\left (A + B\right )} \sqrt {c} \cos \left (f x + e\right ) \log \left (-\frac {\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) - 2\right )} \sin \left (f x + e\right ) + \frac {2 \, \sqrt {2} \sqrt {-c \sin \left (f x + e\right ) + c} {\left (\cos \left (f x + e\right ) + \sin \left (f x + e\right ) + 1\right )}}{\sqrt {c}} + 3 \, \cos \left (f x + e\right ) + 2}{\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right ) - 4 \, \sqrt {-c \sin \left (f x + e\right ) + c} {\left (A - B\right )}}{4 \, a c f \cos \left (f x + e\right )} \] Input:

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))/(c-c*sin(f*x+e))^(1/2),x, algo 
rithm="fricas")
 

Output:

1/4*(sqrt(2)*(A + B)*sqrt(c)*cos(f*x + e)*log(-(cos(f*x + e)^2 + (cos(f*x 
+ e) - 2)*sin(f*x + e) + 2*sqrt(2)*sqrt(-c*sin(f*x + e) + c)*(cos(f*x + e) 
 + sin(f*x + e) + 1)/sqrt(c) + 3*cos(f*x + e) + 2)/(cos(f*x + e)^2 + (cos( 
f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2)) - 4*sqrt(-c*sin(f*x + e) + 
 c)*(A - B))/(a*c*f*cos(f*x + e))
 

Sympy [F]

\[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) \sqrt {c-c \sin (e+f x)}} \, dx=\frac {\int \frac {A}{\sqrt {- c \sin {\left (e + f x \right )} + c} \sin {\left (e + f x \right )} + \sqrt {- c \sin {\left (e + f x \right )} + c}}\, dx + \int \frac {B \sin {\left (e + f x \right )}}{\sqrt {- c \sin {\left (e + f x \right )} + c} \sin {\left (e + f x \right )} + \sqrt {- c \sin {\left (e + f x \right )} + c}}\, dx}{a} \] Input:

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))/(c-c*sin(f*x+e))**(1/2),x)
 

Output:

(Integral(A/(sqrt(-c*sin(e + f*x) + c)*sin(e + f*x) + sqrt(-c*sin(e + f*x) 
 + c)), x) + Integral(B*sin(e + f*x)/(sqrt(-c*sin(e + f*x) + c)*sin(e + f* 
x) + sqrt(-c*sin(e + f*x) + c)), x))/a
 

Maxima [F]

\[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) \sqrt {c-c \sin (e+f x)}} \, dx=\int { \frac {B \sin \left (f x + e\right ) + A}{{\left (a \sin \left (f x + e\right ) + a\right )} \sqrt {-c \sin \left (f x + e\right ) + c}} \,d x } \] Input:

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))/(c-c*sin(f*x+e))^(1/2),x, algo 
rithm="maxima")
 

Output:

integrate((B*sin(f*x + e) + A)/((a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) 
+ c)), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) \sqrt {c-c \sin (e+f x)}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))/(c-c*sin(f*x+e))^(1/2),x, algo 
rithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) \sqrt {c-c \sin (e+f x)}} \, dx=\int \frac {A+B\,\sin \left (e+f\,x\right )}{\left (a+a\,\sin \left (e+f\,x\right )\right )\,\sqrt {c-c\,\sin \left (e+f\,x\right )}} \,d x \] Input:

int((A + B*sin(e + f*x))/((a + a*sin(e + f*x))*(c - c*sin(e + f*x))^(1/2)) 
,x)
 

Output:

int((A + B*sin(e + f*x))/((a + a*sin(e + f*x))*(c - c*sin(e + f*x))^(1/2)) 
, x)
 

Reduce [F]

\[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) \sqrt {c-c \sin (e+f x)}} \, dx=-\frac {\sqrt {c}\, \left (\left (\int \frac {\sqrt {-\sin \left (f x +e \right )+1}}{\sin \left (f x +e \right )^{2}-1}d x \right ) a +\left (\int \frac {\sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )}{\sin \left (f x +e \right )^{2}-1}d x \right ) b \right )}{a c} \] Input:

int((A+B*sin(f*x+e))/(a+a*sin(f*x+e))/(c-c*sin(f*x+e))^(1/2),x)
 

Output:

( - sqrt(c)*(int(sqrt( - sin(e + f*x) + 1)/(sin(e + f*x)**2 - 1),x)*a + in 
t((sqrt( - sin(e + f*x) + 1)*sin(e + f*x))/(sin(e + f*x)**2 - 1),x)*b))/(a 
*c)