\(\int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^2} \, dx\) [119]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 38, antiderivative size = 78 \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^2} \, dx=-\frac {(A+5 B) \sec (e+f x) \sqrt {c-c \sin (e+f x)}}{3 a^2 f}-\frac {(A-B) \sec ^3(e+f x) (c-c \sin (e+f x))^{5/2}}{3 a^2 c^2 f} \] Output:

-1/3*(A+5*B)*sec(f*x+e)*(c-c*sin(f*x+e))^(1/2)/a^2/f-1/3*(A-B)*sec(f*x+e)^ 
3*(c-c*sin(f*x+e))^(5/2)/a^2/c^2/f
 

Mathematica [A] (verified)

Time = 2.86 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.12 \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^2} \, dx=-\frac {2 (A+2 B+3 B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{3 a^2 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3} \] Input:

Integrate[((A + B*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]])/(a + a*Sin[e + f 
*x])^2,x]
 

Output:

(-2*(A + 2*B + 3*B*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]])/(3*a^2*f*(Cos[( 
e + f*x)/2] - Sin[(e + f*x)/2])*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3)
 

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.01, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {3042, 3446, 3042, 3334, 3042, 3152}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {c-c \sin (e+f x)} (A+B \sin (e+f x))}{(a \sin (e+f x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {c-c \sin (e+f x)} (A+B \sin (e+f x))}{(a \sin (e+f x)+a)^2}dx\)

\(\Big \downarrow \) 3446

\(\displaystyle \frac {\int \sec ^4(e+f x) (A+B \sin (e+f x)) (c-c \sin (e+f x))^{5/2}dx}{a^2 c^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{5/2}}{\cos (e+f x)^4}dx}{a^2 c^2}\)

\(\Big \downarrow \) 3334

\(\displaystyle \frac {\frac {1}{6} c (A+5 B) \int \sec ^2(e+f x) (c-c \sin (e+f x))^{3/2}dx-\frac {(A-B) \sec ^3(e+f x) (c-c \sin (e+f x))^{5/2}}{3 f}}{a^2 c^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{6} c (A+5 B) \int \frac {(c-c \sin (e+f x))^{3/2}}{\cos (e+f x)^2}dx-\frac {(A-B) \sec ^3(e+f x) (c-c \sin (e+f x))^{5/2}}{3 f}}{a^2 c^2}\)

\(\Big \downarrow \) 3152

\(\displaystyle \frac {-\frac {c^2 (A+5 B) \sec (e+f x) \sqrt {c-c \sin (e+f x)}}{3 f}-\frac {(A-B) \sec ^3(e+f x) (c-c \sin (e+f x))^{5/2}}{3 f}}{a^2 c^2}\)

Input:

Int[((A + B*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]])/(a + a*Sin[e + f*x])^2 
,x]
 

Output:

(-1/3*((A + 5*B)*c^2*Sec[e + f*x]*Sqrt[c - c*Sin[e + f*x]])/f - ((A - B)*S 
ec[e + f*x]^3*(c - c*Sin[e + f*x])^(5/2))/(3*f))/(a^2*c^2)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3152
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x 
])^(m - 1)/(f*g*(m - 1))), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 
 - b^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m, 1]
 

rule 3334
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(b* 
c + a*d))*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(p + 1))) 
, x] + Simp[b*((a*d*m + b*c*(m + p + 1))/(a*g^2*(p + 1)))   Int[(g*Cos[e + 
f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, c, d, e, 
 f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, -1] && LtQ[p, -1]
 

rule 3446
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Si 
mp[a^m*c^m   Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A + B*Sin 
[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a* 
d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] 
&& GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))
 
Maple [A] (verified)

Time = 0.42 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.81

method result size
default \(\frac {2 c \left (\sin \left (f x +e \right )-1\right ) \left (3 B \sin \left (f x +e \right )+A +2 B \right )}{3 a^{2} \left (1+\sin \left (f x +e \right )\right ) \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(63\)

Input:

int((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^2,x,method=_R 
ETURNVERBOSE)
 

Output:

2/3*c/a^2*(sin(f*x+e)-1)/(1+sin(f*x+e))*(3*B*sin(f*x+e)+A+2*B)/cos(f*x+e)/ 
(c-c*sin(f*x+e))^(1/2)/f
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.77 \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^2} \, dx=-\frac {2 \, {\left (3 \, B \sin \left (f x + e\right ) + A + 2 \, B\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{3 \, {\left (a^{2} f \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a^{2} f \cos \left (f x + e\right )\right )}} \] Input:

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^2,x, al 
gorithm="fricas")
 

Output:

-2/3*(3*B*sin(f*x + e) + A + 2*B)*sqrt(-c*sin(f*x + e) + c)/(a^2*f*cos(f*x 
 + e)*sin(f*x + e) + a^2*f*cos(f*x + e))
 

Sympy [F]

\[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^2} \, dx=\frac {\int \frac {A \sqrt {- c \sin {\left (e + f x \right )} + c}}{\sin ^{2}{\left (e + f x \right )} + 2 \sin {\left (e + f x \right )} + 1}\, dx + \int \frac {B \sqrt {- c \sin {\left (e + f x \right )} + c} \sin {\left (e + f x \right )}}{\sin ^{2}{\left (e + f x \right )} + 2 \sin {\left (e + f x \right )} + 1}\, dx}{a^{2}} \] Input:

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))**(1/2)/(a+a*sin(f*x+e))**2,x)
 

Output:

(Integral(A*sqrt(-c*sin(e + f*x) + c)/(sin(e + f*x)**2 + 2*sin(e + f*x) + 
1), x) + Integral(B*sqrt(-c*sin(e + f*x) + c)*sin(e + f*x)/(sin(e + f*x)** 
2 + 2*sin(e + f*x) + 1), x))/a**2
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 343 vs. \(2 (70) = 140\).

Time = 0.15 (sec) , antiderivative size = 343, normalized size of antiderivative = 4.40 \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^2} \, dx=\frac {2 \, {\left (\frac {2 \, B {\left (\sqrt {c} + \frac {3 \, \sqrt {c} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {2 \, \sqrt {c} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {3 \, \sqrt {c} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {\sqrt {c} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}}\right )}}{{\left (a^{2} + \frac {3 \, a^{2} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, a^{2} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {a^{2} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}\right )} \sqrt {\frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1}} + \frac {A {\left (\sqrt {c} + \frac {2 \, \sqrt {c} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {\sqrt {c} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}}\right )}}{{\left (a^{2} + \frac {3 \, a^{2} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, a^{2} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {a^{2} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}\right )} \sqrt {\frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1}}\right )}}{3 \, f} \] Input:

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^2,x, al 
gorithm="maxima")
 

Output:

2/3*(2*B*(sqrt(c) + 3*sqrt(c)*sin(f*x + e)/(cos(f*x + e) + 1) + 2*sqrt(c)* 
sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 3*sqrt(c)*sin(f*x + e)^3/(cos(f*x + 
e) + 1)^3 + sqrt(c)*sin(f*x + e)^4/(cos(f*x + e) + 1)^4)/((a^2 + 3*a^2*sin 
(f*x + e)/(cos(f*x + e) + 1) + 3*a^2*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 
 a^2*sin(f*x + e)^3/(cos(f*x + e) + 1)^3)*sqrt(sin(f*x + e)^2/(cos(f*x + e 
) + 1)^2 + 1)) + A*(sqrt(c) + 2*sqrt(c)*sin(f*x + e)^2/(cos(f*x + e) + 1)^ 
2 + sqrt(c)*sin(f*x + e)^4/(cos(f*x + e) + 1)^4)/((a^2 + 3*a^2*sin(f*x + e 
)/(cos(f*x + e) + 1) + 3*a^2*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + a^2*sin 
(f*x + e)^3/(cos(f*x + e) + 1)^3)*sqrt(sin(f*x + e)^2/(cos(f*x + e) + 1)^2 
 + 1)))/f
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 223 vs. \(2 (70) = 140\).

Time = 0.24 (sec) , antiderivative size = 223, normalized size of antiderivative = 2.86 \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^2} \, dx=\frac {\sqrt {2} {\left (A \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 5 \, B \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + \frac {12 \, B {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} + \frac {3 \, A {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}} + \frac {3 \, B {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}}\right )} \sqrt {c}}{3 \, a^{2} f {\left (\frac {\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} + 1\right )}^{3}} \] Input:

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^2,x, al 
gorithm="giac")
 

Output:

1/3*sqrt(2)*(A*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)) + 5*B*sgn(sin(-1/4*pi + 
 1/2*f*x + 1/2*e)) + 12*B*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)*sgn(sin(-1/ 
4*pi + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) + 3*A*(cos(- 
1/4*pi + 1/2*f*x + 1/2*e) - 1)^2*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(cos( 
-1/4*pi + 1/2*f*x + 1/2*e) + 1)^2 + 3*B*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 
1)^2*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 
 1)^2)*sqrt(c)/(a^2*f*((cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 
 1/2*f*x + 1/2*e) + 1) + 1)^3)
 

Mupad [B] (verification not implemented)

Time = 49.24 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.76 \[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^2} \, dx=\frac {4\,{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,\sqrt {c-c\,\left (\frac {{\mathrm {e}}^{-e\,1{}\mathrm {i}-f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}-\frac {{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}}{2}\right )}\,\left (B\,3{}\mathrm {i}+2\,A\,{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}+4\,B\,{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}-B\,{\mathrm {e}}^{e\,2{}\mathrm {i}+f\,x\,2{}\mathrm {i}}\,3{}\mathrm {i}\right )}{3\,a^2\,f\,{\left ({\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}+1{}\mathrm {i}\right )}^3\,\left (1+{\mathrm {e}}^{e\,1{}\mathrm {i}+f\,x\,1{}\mathrm {i}}\,1{}\mathrm {i}\right )} \] Input:

int(((A + B*sin(e + f*x))*(c - c*sin(e + f*x))^(1/2))/(a + a*sin(e + f*x)) 
^2,x)
 

Output:

(4*exp(e*1i + f*x*1i)*(c - c*((exp(- e*1i - f*x*1i)*1i)/2 - (exp(e*1i + f* 
x*1i)*1i)/2))^(1/2)*(B*3i + 2*A*exp(e*1i + f*x*1i) + 4*B*exp(e*1i + f*x*1i 
) - B*exp(e*2i + f*x*2i)*3i))/(3*a^2*f*(exp(e*1i + f*x*1i) + 1i)^3*(exp(e* 
1i + f*x*1i)*1i + 1))
 

Reduce [F]

\[ \int \frac {(A+B \sin (e+f x)) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^2} \, dx=\frac {\sqrt {c}\, \left (\left (\int \frac {\sqrt {-\sin \left (f x +e \right )+1}}{\sin \left (f x +e \right )^{2}+2 \sin \left (f x +e \right )+1}d x \right ) a +\left (\int \frac {\sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )}{\sin \left (f x +e \right )^{2}+2 \sin \left (f x +e \right )+1}d x \right ) b \right )}{a^{2}} \] Input:

int((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^2,x)
 

Output:

(sqrt(c)*(int(sqrt( - sin(e + f*x) + 1)/(sin(e + f*x)**2 + 2*sin(e + f*x) 
+ 1),x)*a + int((sqrt( - sin(e + f*x) + 1)*sin(e + f*x))/(sin(e + f*x)**2 
+ 2*sin(e + f*x) + 1),x)*b))/a**2