\(\int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx\) [139]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 40, antiderivative size = 146 \[ \int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx=-\frac {a^2 (3 A-B) \cos (e+f x) (c-c \sin (e+f x))^{7/2}}{30 f \sqrt {a+a \sin (e+f x)}}-\frac {a (3 A-B) \cos (e+f x) \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2}}{15 f}-\frac {B \cos (e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f} \] Output:

-1/30*a^2*(3*A-B)*cos(f*x+e)*(c-c*sin(f*x+e))^(7/2)/f/(a+a*sin(f*x+e))^(1/ 
2)-1/15*a*(3*A-B)*cos(f*x+e)*(a+a*sin(f*x+e))^(1/2)*(c-c*sin(f*x+e))^(7/2) 
/f-1/6*B*cos(f*x+e)*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(7/2)/f
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 9.49 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.40 \[ \int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx=-\frac {c^3 (-1+\sin (e+f x))^3 (a (1+\sin (e+f x)))^{3/2} \sqrt {c-c \sin (e+f x)} (15 (16 A-11 B) \cos (2 (e+f x))+30 (2 A-B) \cos (4 (e+f x))+5 B \cos (6 (e+f x))+840 A \sin (e+f x)-240 B \sin (e+f x)+60 A \sin (3 (e+f x))+40 B \sin (3 (e+f x))-12 A \sin (5 (e+f x))+24 B \sin (5 (e+f x)))}{960 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3} \] Input:

Integrate[(a + a*Sin[e + f*x])^(3/2)*(A + B*Sin[e + f*x])*(c - c*Sin[e + f 
*x])^(7/2),x]
 

Output:

-1/960*(c^3*(-1 + Sin[e + f*x])^3*(a*(1 + Sin[e + f*x]))^(3/2)*Sqrt[c - c* 
Sin[e + f*x]]*(15*(16*A - 11*B)*Cos[2*(e + f*x)] + 30*(2*A - B)*Cos[4*(e + 
 f*x)] + 5*B*Cos[6*(e + f*x)] + 840*A*Sin[e + f*x] - 240*B*Sin[e + f*x] + 
60*A*Sin[3*(e + f*x)] + 40*B*Sin[3*(e + f*x)] - 12*A*Sin[5*(e + f*x)] + 24 
*B*Sin[5*(e + f*x)]))/(f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^7*(Cos[(e + 
 f*x)/2] + Sin[(e + f*x)/2])^3)
 

Rubi [A] (verified)

Time = 0.79 (sec) , antiderivative size = 144, normalized size of antiderivative = 0.99, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {3042, 3452, 3042, 3219, 3042, 3217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2} (A+B \sin (e+f x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2} (A+B \sin (e+f x))dx\)

\(\Big \downarrow \) 3452

\(\displaystyle \frac {1}{3} (3 A-B) \int (\sin (e+f x) a+a)^{3/2} (c-c \sin (e+f x))^{7/2}dx-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} (3 A-B) \int (\sin (e+f x) a+a)^{3/2} (c-c \sin (e+f x))^{7/2}dx-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}\)

\(\Big \downarrow \) 3219

\(\displaystyle \frac {1}{3} (3 A-B) \left (\frac {2}{5} a \int \sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{7/2}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}{5 f}\right )-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} (3 A-B) \left (\frac {2}{5} a \int \sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{7/2}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}{5 f}\right )-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}\)

\(\Big \downarrow \) 3217

\(\displaystyle \frac {1}{3} (3 A-B) \left (-\frac {a^2 \cos (e+f x) (c-c \sin (e+f x))^{7/2}}{10 f \sqrt {a \sin (e+f x)+a}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}{5 f}\right )-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}\)

Input:

Int[(a + a*Sin[e + f*x])^(3/2)*(A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^( 
7/2),x]
 

Output:

-1/6*(B*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(7/2) 
)/f + ((3*A - B)*(-1/10*(a^2*Cos[e + f*x]*(c - c*Sin[e + f*x])^(7/2))/(f*S 
qrt[a + a*Sin[e + f*x]]) - (a*Cos[e + f*x]*Sqrt[a + a*Sin[e + f*x]]*(c - c 
*Sin[e + f*x])^(7/2))/(5*f)))/3
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3217
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f 
_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^ 
n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e, f, n 
}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]
 

rule 3219
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Simp[a*((2*m - 1)/(m + n 
))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; Fre 
eQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I 
GtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m]) &&  !( 
ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])
 

rule 3452
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(f*(m + 
n + 1))), x] - Simp[(B*c*(m - n) - A*d*(m + n + 1))/(d*(m + n + 1))   Int[( 
a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, 
e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, 
 -2^(-1)] && NeQ[m + n + 1, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(281\) vs. \(2(128)=256\).

Time = 7.95 (sec) , antiderivative size = 282, normalized size of antiderivative = 1.93

method result size
default \(\frac {192 c^{3} a \left (A \left (\cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{6}+\frac {3 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}}{4}+\frac {\cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}{2}+\frac {1}{4}\right ) \tan \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right ) \left (\cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}-\frac {1}{2}\right ) \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}-2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} \left (\frac {5 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{8}}{6}+\cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{5} \sin \left (\frac {f x}{2}+\frac {e}{2}\right )-\frac {5 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{6}}{3}-\cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{3} \sin \left (\frac {f x}{2}+\frac {e}{2}\right )+\frac {5 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{4}}{6}+\frac {5 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )}{12}-\frac {5}{32}\right ) B \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}\right ) \sqrt {c \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, \sqrt {a \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}}{30 f \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}-15 f}\) \(282\)
parts \(\frac {4 A \sqrt {4}\, \sqrt {a \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, \sqrt {c \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, \left (4 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{6}+3 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}+2 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}+1\right ) a \,c^{3} \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2} \tan \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )}{5 f}-\frac {2 B \sqrt {-\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right ) c}\, \sqrt {\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right ) a}\, \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} \left (\left (96 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{5}-96 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{3}+40 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )\right ) \sin \left (\frac {f x}{2}+\frac {e}{2}\right )+80 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{8}-160 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{6}+80 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{4}-15\right ) \sin \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} a \,c^{3}}{15 f \left (-1+2 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}\right )}\) \(318\)

Input:

int((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(7/2),x,metho 
d=_RETURNVERBOSE)
 

Output:

192*c^3*a*(A*(cos(1/4*Pi+1/2*f*x+1/2*e)^6+3/4*cos(1/4*Pi+1/2*f*x+1/2*e)^4+ 
1/2*cos(1/4*Pi+1/2*f*x+1/2*e)^2+1/4)*tan(1/4*Pi+1/2*f*x+1/2*e)*(cos(1/2*f* 
x+1/2*e)^2-1/2)*sin(1/4*Pi+1/2*f*x+1/2*e)^2-2*sin(1/2*f*x+1/2*e)^2*(5/6*co 
s(1/2*f*x+1/2*e)^8+cos(1/2*f*x+1/2*e)^5*sin(1/2*f*x+1/2*e)-5/3*cos(1/2*f*x 
+1/2*e)^6-cos(1/2*f*x+1/2*e)^3*sin(1/2*f*x+1/2*e)+5/6*cos(1/2*f*x+1/2*e)^4 
+5/12*sin(1/2*f*x+1/2*e)*cos(1/2*f*x+1/2*e)-5/32)*B*cos(1/2*f*x+1/2*e)^2)* 
(c*cos(1/4*Pi+1/2*f*x+1/2*e)^2)^(1/2)*(a*sin(1/4*Pi+1/2*f*x+1/2*e)^2)^(1/2 
)/(30*f*cos(1/2*f*x+1/2*e)^2-15*f)
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.01 \[ \int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx=\frac {{\left (5 \, B a c^{3} \cos \left (f x + e\right )^{6} + 15 \, {\left (A - B\right )} a c^{3} \cos \left (f x + e\right )^{4} - 5 \, {\left (3 \, A - 2 \, B\right )} a c^{3} - 2 \, {\left (3 \, {\left (A - 2 \, B\right )} a c^{3} \cos \left (f x + e\right )^{4} - 2 \, {\left (3 \, A - B\right )} a c^{3} \cos \left (f x + e\right )^{2} - 4 \, {\left (3 \, A - B\right )} a c^{3}\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{30 \, f \cos \left (f x + e\right )} \] Input:

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(7/2),x 
, algorithm="fricas")
 

Output:

1/30*(5*B*a*c^3*cos(f*x + e)^6 + 15*(A - B)*a*c^3*cos(f*x + e)^4 - 5*(3*A 
- 2*B)*a*c^3 - 2*(3*(A - 2*B)*a*c^3*cos(f*x + e)^4 - 2*(3*A - B)*a*c^3*cos 
(f*x + e)^2 - 4*(3*A - B)*a*c^3)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sq 
rt(-c*sin(f*x + e) + c)/(f*cos(f*x + e))
 

Sympy [F(-1)]

Timed out. \[ \int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx=\text {Timed out} \] Input:

integrate((a+a*sin(f*x+e))**(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))**(7/2) 
,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx=\int { {\left (B \sin \left (f x + e\right ) + A\right )} {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {7}{2}} \,d x } \] Input:

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(7/2),x 
, algorithm="maxima")
 

Output:

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^(3/2)*(-c*sin(f*x + e) 
 + c)^(7/2), x)
 

Giac [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 247, normalized size of antiderivative = 1.69 \[ \int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx=\frac {8 \, {\left (20 \, B a c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{12} - 12 \, A a c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{10} - 36 \, B a c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{10} + 15 \, A a c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{8} + 15 \, B a c^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{8}\right )} \sqrt {a} \sqrt {c}}{15 \, f} \] Input:

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(7/2),x 
, algorithm="giac")
 

Output:

8/15*(20*B*a*c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2 
*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^12 - 12*A*a*c^3*sgn(cos(-1/4 
*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 
1/2*f*x + 1/2*e)^10 - 36*B*a*c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(s 
in(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^10 + 15*A*a* 
c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e) 
)*sin(-1/4*pi + 1/2*f*x + 1/2*e)^8 + 15*B*a*c^3*sgn(cos(-1/4*pi + 1/2*f*x 
+ 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2* 
e)^8)*sqrt(a)*sqrt(c)/f
 

Mupad [B] (verification not implemented)

Time = 42.47 (sec) , antiderivative size = 323, normalized size of antiderivative = 2.21 \[ \int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx=\frac {{\mathrm {e}}^{-e\,6{}\mathrm {i}-f\,x\,6{}\mathrm {i}}\,\sqrt {c-c\,\sin \left (e+f\,x\right )}\,\left (\frac {B\,a\,c^3\,{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\cos \left (6\,e+6\,f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{96\,f}-\frac {a\,c^3\,{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\sin \left (e+f\,x\right )\,\left (A\,7{}\mathrm {i}-B\,2{}\mathrm {i}\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}\,1{}\mathrm {i}}{4\,f}+\frac {a\,c^3\,{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\cos \left (4\,e+4\,f\,x\right )\,\left (2\,A-B\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{16\,f}+\frac {a\,c^3\,{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\cos \left (2\,e+2\,f\,x\right )\,\left (16\,A-11\,B\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{32\,f}-\frac {a\,c^3\,{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\sin \left (3\,e+3\,f\,x\right )\,\left (A\,3{}\mathrm {i}+B\,2{}\mathrm {i}\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}\,1{}\mathrm {i}}{24\,f}+\frac {a\,c^3\,{\mathrm {e}}^{e\,6{}\mathrm {i}+f\,x\,6{}\mathrm {i}}\,\sin \left (5\,e+5\,f\,x\right )\,\left (A\,1{}\mathrm {i}-B\,2{}\mathrm {i}\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}\,1{}\mathrm {i}}{40\,f}\right )}{2\,\cos \left (e+f\,x\right )} \] Input:

int((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^( 
7/2),x)
 

Output:

(exp(- e*6i - f*x*6i)*(c - c*sin(e + f*x))^(1/2)*((B*a*c^3*exp(e*6i + f*x* 
6i)*cos(6*e + 6*f*x)*(a + a*sin(e + f*x))^(1/2))/(96*f) - (a*c^3*exp(e*6i 
+ f*x*6i)*sin(e + f*x)*(A*7i - B*2i)*(a + a*sin(e + f*x))^(1/2)*1i)/(4*f) 
+ (a*c^3*exp(e*6i + f*x*6i)*cos(4*e + 4*f*x)*(2*A - B)*(a + a*sin(e + f*x) 
)^(1/2))/(16*f) + (a*c^3*exp(e*6i + f*x*6i)*cos(2*e + 2*f*x)*(16*A - 11*B) 
*(a + a*sin(e + f*x))^(1/2))/(32*f) - (a*c^3*exp(e*6i + f*x*6i)*sin(3*e + 
3*f*x)*(A*3i + B*2i)*(a + a*sin(e + f*x))^(1/2)*1i)/(24*f) + (a*c^3*exp(e* 
6i + f*x*6i)*sin(5*e + 5*f*x)*(A*1i - B*2i)*(a + a*sin(e + f*x))^(1/2)*1i) 
/(40*f)))/(2*cos(e + f*x))
 

Reduce [F]

\[ \int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx=\sqrt {c}\, \sqrt {a}\, a \,c^{3} \left (-\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{5}d x \right ) b -\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{4}d x \right ) a +2 \left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{4}d x \right ) b +2 \left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{3}d x \right ) a -2 \left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{2}d x \right ) b -2 \left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )d x \right ) a +\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )d x \right ) b +\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}d x \right ) a \right ) \] Input:

int((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(7/2),x)
 

Output:

sqrt(c)*sqrt(a)*a*c**3*( - int(sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) 
 + 1)*sin(e + f*x)**5,x)*b - int(sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f* 
x) + 1)*sin(e + f*x)**4,x)*a + 2*int(sqrt(sin(e + f*x) + 1)*sqrt( - sin(e 
+ f*x) + 1)*sin(e + f*x)**4,x)*b + 2*int(sqrt(sin(e + f*x) + 1)*sqrt( - si 
n(e + f*x) + 1)*sin(e + f*x)**3,x)*a - 2*int(sqrt(sin(e + f*x) + 1)*sqrt( 
- sin(e + f*x) + 1)*sin(e + f*x)**2,x)*b - 2*int(sqrt(sin(e + f*x) + 1)*sq 
rt( - sin(e + f*x) + 1)*sin(e + f*x),x)*a + int(sqrt(sin(e + f*x) + 1)*sqr 
t( - sin(e + f*x) + 1)*sin(e + f*x),x)*b + int(sqrt(sin(e + f*x) + 1)*sqrt 
( - sin(e + f*x) + 1),x)*a)