\(\int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx\) [141]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 40, antiderivative size = 134 \[ \int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx=-\frac {a^2 A \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{3 f \sqrt {a+a \sin (e+f x)}}-\frac {a A \cos (e+f x) \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}{3 f}-\frac {B \cos (e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}{4 f} \] Output:

-1/3*a^2*A*cos(f*x+e)*(c-c*sin(f*x+e))^(3/2)/f/(a+a*sin(f*x+e))^(1/2)-1/3* 
a*A*cos(f*x+e)*(a+a*sin(f*x+e))^(1/2)*(c-c*sin(f*x+e))^(3/2)/f-1/4*B*cos(f 
*x+e)*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(3/2)/f
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 2.86 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.74 \[ \int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx=\frac {c \sec ^3(e+f x) (-1+\sin (e+f x)) (a (1+\sin (e+f x)))^{3/2} \sqrt {c-c \sin (e+f x)} (9 B+12 B \cos (2 (e+f x))+3 B \cos (4 (e+f x))-72 A \sin (e+f x)-8 A \sin (3 (e+f x)))}{96 f} \] Input:

Integrate[(a + a*Sin[e + f*x])^(3/2)*(A + B*Sin[e + f*x])*(c - c*Sin[e + f 
*x])^(3/2),x]
 

Output:

(c*Sec[e + f*x]^3*(-1 + Sin[e + f*x])*(a*(1 + Sin[e + f*x]))^(3/2)*Sqrt[c 
- c*Sin[e + f*x]]*(9*B + 12*B*Cos[2*(e + f*x)] + 3*B*Cos[4*(e + f*x)] - 72 
*A*Sin[e + f*x] - 8*A*Sin[3*(e + f*x)]))/(96*f)
 

Rubi [A] (verified)

Time = 0.73 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.01, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {3042, 3452, 3042, 3219, 3042, 3217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2} (A+B \sin (e+f x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2} (A+B \sin (e+f x))dx\)

\(\Big \downarrow \) 3452

\(\displaystyle A \int (\sin (e+f x) a+a)^{3/2} (c-c \sin (e+f x))^{3/2}dx-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}{4 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle A \int (\sin (e+f x) a+a)^{3/2} (c-c \sin (e+f x))^{3/2}dx-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}{4 f}\)

\(\Big \downarrow \) 3219

\(\displaystyle A \left (\frac {2}{3} a \int \sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{3/2}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}{3 f}\right )-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}{4 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle A \left (\frac {2}{3} a \int \sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{3/2}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}{3 f}\right )-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}{4 f}\)

\(\Big \downarrow \) 3217

\(\displaystyle A \left (-\frac {a^2 \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{3 f \sqrt {a \sin (e+f x)+a}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}{3 f}\right )-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}{4 f}\)

Input:

Int[(a + a*Sin[e + f*x])^(3/2)*(A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^( 
3/2),x]
 

Output:

-1/4*(B*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2) 
)/f + A*(-1/3*(a^2*Cos[e + f*x]*(c - c*Sin[e + f*x])^(3/2))/(f*Sqrt[a + a* 
Sin[e + f*x]]) - (a*Cos[e + f*x]*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f 
*x])^(3/2))/(3*f))
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3217
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f 
_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^ 
n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e, f, n 
}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]
 

rule 3219
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Simp[a*((2*m - 1)/(m + n 
))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; Fre 
eQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I 
GtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m]) &&  !( 
ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])
 

rule 3452
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(f*(m + 
n + 1))), x] - Simp[(B*c*(m - n) - A*d*(m + n + 1))/(d*(m + n + 1))   Int[( 
a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, 
e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, 
 -2^(-1)] && NeQ[m + n + 1, 0]
 
Maple [A] (verified)

Time = 6.46 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.27

method result size
default \(\frac {16 c a \left (A \left (\cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}-\frac {1}{2}\right ) \left (\cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}+\frac {1}{2}\right ) \tan \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right ) \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}+\frac {3 \sin \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} \left (\cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{4}-\cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}+\frac {1}{2}\right ) B \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}}{2}\right ) \sqrt {c \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, \sqrt {a \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}}{6 f \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}-3 f}\) \(170\)
parts \(\frac {2 A \sqrt {4}\, \sqrt {a \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, \sqrt {c \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, \left (2 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}+1\right ) a c \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2} \tan \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )}{3 f}+\frac {2 B a c \sqrt {\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right ) a}\, \sqrt {-\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right ) c}\, \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} \left (2 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{4}-2 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}+1\right ) \sin \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}}{f \left (-1+2 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}\right )}\) \(221\)

Input:

int((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2),x,metho 
d=_RETURNVERBOSE)
 

Output:

16*c*a*(A*(cos(1/2*f*x+1/2*e)^2-1/2)*(cos(1/4*Pi+1/2*f*x+1/2*e)^2+1/2)*tan 
(1/4*Pi+1/2*f*x+1/2*e)*sin(1/4*Pi+1/2*f*x+1/2*e)^2+3/2*sin(1/2*f*x+1/2*e)^ 
2*(cos(1/2*f*x+1/2*e)^4-cos(1/2*f*x+1/2*e)^2+1/2)*B*cos(1/2*f*x+1/2*e)^2)* 
(c*cos(1/4*Pi+1/2*f*x+1/2*e)^2)^(1/2)*(a*sin(1/4*Pi+1/2*f*x+1/2*e)^2)^(1/2 
)/(6*f*cos(1/2*f*x+1/2*e)^2-3*f)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.62 \[ \int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx=-\frac {{\left (3 \, B a c \cos \left (f x + e\right )^{4} - 3 \, B a c - 4 \, {\left (A a c \cos \left (f x + e\right )^{2} + 2 \, A a c\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{12 \, f \cos \left (f x + e\right )} \] Input:

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2),x 
, algorithm="fricas")
 

Output:

-1/12*(3*B*a*c*cos(f*x + e)^4 - 3*B*a*c - 4*(A*a*c*cos(f*x + e)^2 + 2*A*a* 
c)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(f*cos 
(f*x + e))
 

Sympy [F(-1)]

Timed out. \[ \int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx=\text {Timed out} \] Input:

integrate((a+a*sin(f*x+e))**(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))**(3/2) 
,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx=\int { {\left (B \sin \left (f x + e\right ) + A\right )} {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}} \,d x } \] Input:

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2),x 
, algorithm="maxima")
 

Output:

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^(3/2)*(-c*sin(f*x + e) 
 + c)^(3/2), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 237 vs. \(2 (116) = 232\).

Time = 0.26 (sec) , antiderivative size = 237, normalized size of antiderivative = 1.77 \[ \int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx=\frac {4 \, {\left (3 \, B a c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{8} - 2 \, A a c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6} - 6 \, B a c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6} + 3 \, A a c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + 3 \, B a c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4}\right )} \sqrt {a} \sqrt {c}}{3 \, f} \] Input:

integrate((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2),x 
, algorithm="giac")
 

Output:

4/3*(3*B*a*c*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x 
 + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^8 - 2*A*a*c*sgn(cos(-1/4*pi + 1/ 
2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x 
+ 1/2*e)^6 - 6*B*a*c*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 
 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^6 + 3*A*a*c*sgn(cos(-1/4 
*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 
1/2*f*x + 1/2*e)^4 + 3*B*a*c*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(- 
1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^4)*sqrt(a)*sqrt( 
c)/f
 

Mupad [B] (verification not implemented)

Time = 2.17 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.77 \[ \int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx=-\frac {a\,c\,\sqrt {a\,\left (\sin \left (e+f\,x\right )+1\right )}\,\sqrt {-c\,\left (\sin \left (e+f\,x\right )-1\right )}\,\left (12\,B\,\cos \left (e+f\,x\right )+15\,B\,\cos \left (3\,e+3\,f\,x\right )+3\,B\,\cos \left (5\,e+5\,f\,x\right )-80\,A\,\sin \left (2\,e+2\,f\,x\right )-8\,A\,\sin \left (4\,e+4\,f\,x\right )\right )}{96\,f\,\left (\cos \left (2\,e+2\,f\,x\right )+1\right )} \] Input:

int((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^( 
3/2),x)
 

Output:

-(a*c*(a*(sin(e + f*x) + 1))^(1/2)*(-c*(sin(e + f*x) - 1))^(1/2)*(12*B*cos 
(e + f*x) + 15*B*cos(3*e + 3*f*x) + 3*B*cos(5*e + 5*f*x) - 80*A*sin(2*e + 
2*f*x) - 8*A*sin(4*e + 4*f*x)))/(96*f*(cos(2*e + 2*f*x) + 1))
 

Reduce [F]

\[ \int (a+a \sin (e+f x))^{3/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2} \, dx=\sqrt {c}\, \sqrt {a}\, a c \left (-\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{3}d x \right ) b -\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{2}d x \right ) a +\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )d x \right ) b +\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}d x \right ) a \right ) \] Input:

int((a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2),x)
 

Output:

sqrt(c)*sqrt(a)*a*c*( - int(sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 
1)*sin(e + f*x)**3,x)*b - int(sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) 
+ 1)*sin(e + f*x)**2,x)*a + int(sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x 
) + 1)*sin(e + f*x),x)*b + int(sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) 
 + 1),x)*a)