\(\int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx\) [149]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 40, antiderivative size = 198 \[ \int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx=-\frac {a^3 (7 A-B) \cos (e+f x) (c-c \sin (e+f x))^{7/2}}{105 f \sqrt {a+a \sin (e+f x)}}-\frac {2 a^2 (7 A-B) \cos (e+f x) \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2}}{105 f}-\frac {a (7 A-B) \cos (e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2}}{42 f}-\frac {B \cos (e+f x) (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{7/2}}{7 f} \] Output:

-1/105*a^3*(7*A-B)*cos(f*x+e)*(c-c*sin(f*x+e))^(7/2)/f/(a+a*sin(f*x+e))^(1 
/2)-2/105*a^2*(7*A-B)*cos(f*x+e)*(a+a*sin(f*x+e))^(1/2)*(c-c*sin(f*x+e))^( 
7/2)/f-1/42*a*(7*A-B)*cos(f*x+e)*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^( 
7/2)/f-1/7*B*cos(f*x+e)*(a+a*sin(f*x+e))^(5/2)*(c-c*sin(f*x+e))^(7/2)/f
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 13.42 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.13 \[ \int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx=-\frac {c^3 (-1+\sin (e+f x))^3 (a (1+\sin (e+f x)))^{5/2} \sqrt {c-c \sin (e+f x)} (525 (A-B) \cos (2 (e+f x))+210 (A-B) \cos (4 (e+f x))+35 A \cos (6 (e+f x))-35 B \cos (6 (e+f x))+4200 A \sin (e+f x)-525 B \sin (e+f x)+700 A \sin (3 (e+f x))+35 B \sin (3 (e+f x))+84 A \sin (5 (e+f x))+63 B \sin (5 (e+f x))+15 B \sin (7 (e+f x)))}{6720 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^7 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^5} \] Input:

Integrate[(a + a*Sin[e + f*x])^(5/2)*(A + B*Sin[e + f*x])*(c - c*Sin[e + f 
*x])^(7/2),x]
 

Output:

-1/6720*(c^3*(-1 + Sin[e + f*x])^3*(a*(1 + Sin[e + f*x]))^(5/2)*Sqrt[c - c 
*Sin[e + f*x]]*(525*(A - B)*Cos[2*(e + f*x)] + 210*(A - B)*Cos[4*(e + f*x) 
] + 35*A*Cos[6*(e + f*x)] - 35*B*Cos[6*(e + f*x)] + 4200*A*Sin[e + f*x] - 
525*B*Sin[e + f*x] + 700*A*Sin[3*(e + f*x)] + 35*B*Sin[3*(e + f*x)] + 84*A 
*Sin[5*(e + f*x)] + 63*B*Sin[5*(e + f*x)] + 15*B*Sin[7*(e + f*x)]))/(f*(Co 
s[(e + f*x)/2] - Sin[(e + f*x)/2])^7*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2]) 
^5)
 

Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 193, normalized size of antiderivative = 0.97, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 3452, 3042, 3219, 3042, 3219, 3042, 3217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{7/2} (A+B \sin (e+f x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{7/2} (A+B \sin (e+f x))dx\)

\(\Big \downarrow \) 3452

\(\displaystyle \frac {1}{7} (7 A-B) \int (\sin (e+f x) a+a)^{5/2} (c-c \sin (e+f x))^{7/2}dx-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{7/2}}{7 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} (7 A-B) \int (\sin (e+f x) a+a)^{5/2} (c-c \sin (e+f x))^{7/2}dx-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{7/2}}{7 f}\)

\(\Big \downarrow \) 3219

\(\displaystyle \frac {1}{7} (7 A-B) \left (\frac {2}{3} a \int (\sin (e+f x) a+a)^{3/2} (c-c \sin (e+f x))^{7/2}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}\right )-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{7/2}}{7 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} (7 A-B) \left (\frac {2}{3} a \int (\sin (e+f x) a+a)^{3/2} (c-c \sin (e+f x))^{7/2}dx-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}\right )-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{7/2}}{7 f}\)

\(\Big \downarrow \) 3219

\(\displaystyle \frac {1}{7} (7 A-B) \left (\frac {2}{3} a \left (\frac {2}{5} a \int \sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{7/2}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}{5 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}\right )-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{7/2}}{7 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} (7 A-B) \left (\frac {2}{3} a \left (\frac {2}{5} a \int \sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{7/2}dx-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}{5 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}\right )-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{7/2}}{7 f}\)

\(\Big \downarrow \) 3217

\(\displaystyle \frac {1}{7} (7 A-B) \left (\frac {2}{3} a \left (-\frac {a^2 \cos (e+f x) (c-c \sin (e+f x))^{7/2}}{10 f \sqrt {a \sin (e+f x)+a}}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}{5 f}\right )-\frac {a \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{6 f}\right )-\frac {B \cos (e+f x) (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{7/2}}{7 f}\)

Input:

Int[(a + a*Sin[e + f*x])^(5/2)*(A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^( 
7/2),x]
 

Output:

-1/7*(B*Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e + f*x])^(7/2) 
)/f + ((7*A - B)*(-1/6*(a*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2)*(c - c*S 
in[e + f*x])^(7/2))/f + (2*a*(-1/10*(a^2*Cos[e + f*x]*(c - c*Sin[e + f*x]) 
^(7/2))/(f*Sqrt[a + a*Sin[e + f*x]]) - (a*Cos[e + f*x]*Sqrt[a + a*Sin[e + 
f*x]]*(c - c*Sin[e + f*x])^(7/2))/(5*f)))/3))/7
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3217
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f 
_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^ 
n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e, f, n 
}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]
 

rule 3219
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Simp[a*((2*m - 1)/(m + n 
))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; Fre 
eQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I 
GtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m]) &&  !( 
ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])
 

rule 3452
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(f*(m + 
n + 1))), x] - Simp[(B*c*(m - n) - A*d*(m + n + 1))/(d*(m + n + 1))   Int[( 
a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, 
e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, 
 -2^(-1)] && NeQ[m + n + 1, 0]
 
Maple [A] (verified)

Time = 79.27 (sec) , antiderivative size = 341, normalized size of antiderivative = 1.72

method result size
default \(\frac {2240 c^{3} a^{2} \left (\left (\cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{6}+\frac {3 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}}{5}+\frac {3 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}{10}+\frac {1}{10}\right ) A \left (\cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}-\frac {1}{2}\right ) \tan \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right ) \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}-\frac {12 \sin \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} B \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} \left (\sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{9}-2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{7}-\frac {7 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{8}}{12}+\frac {17 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{5} \sin \left (\frac {f x}{2}+\frac {e}{2}\right )}{10}+\frac {7 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{6}}{6}-\frac {7 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{3} \sin \left (\frac {f x}{2}+\frac {e}{2}\right )}{10}-\frac {49 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{4}}{48}+\frac {7 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )}{48}+\frac {7 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}}{16}-\frac {7}{64}\right )}{7}\right ) \sqrt {c \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, \sqrt {a \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}}{210 f \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}-105 f}\) \(341\)
parts \(\frac {8 A \sqrt {4}\, \sqrt {a \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, \sqrt {c \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, \left (10 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{6}+6 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}+3 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}+1\right ) a^{2} c^{3} \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4} \tan \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )}{15 f}-\frac {2 B \sqrt {-\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right ) c}\, \sqrt {\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right ) a}\, \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} \left (\left (960 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{9}-1920 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{7}+1632 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{5}-672 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{3}+140 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )\right ) \sin \left (\frac {f x}{2}+\frac {e}{2}\right )-560 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{8}+1120 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{6}-980 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{4}+420 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}-105\right ) \sin \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} a^{2} c^{3}}{105 f \left (-1+2 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}\right )}\) \(361\)

Input:

int((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(7/2),x,metho 
d=_RETURNVERBOSE)
 

Output:

2240*c^3*a^2*((cos(1/4*Pi+1/2*f*x+1/2*e)^6+3/5*cos(1/4*Pi+1/2*f*x+1/2*e)^4 
+3/10*cos(1/4*Pi+1/2*f*x+1/2*e)^2+1/10)*A*(cos(1/2*f*x+1/2*e)^2-1/2)*tan(1 
/4*Pi+1/2*f*x+1/2*e)*sin(1/4*Pi+1/2*f*x+1/2*e)^4-12/7*sin(1/2*f*x+1/2*e)^2 
*B*cos(1/2*f*x+1/2*e)^2*(sin(1/2*f*x+1/2*e)*cos(1/2*f*x+1/2*e)^9-2*sin(1/2 
*f*x+1/2*e)*cos(1/2*f*x+1/2*e)^7-7/12*cos(1/2*f*x+1/2*e)^8+17/10*cos(1/2*f 
*x+1/2*e)^5*sin(1/2*f*x+1/2*e)+7/6*cos(1/2*f*x+1/2*e)^6-7/10*cos(1/2*f*x+1 
/2*e)^3*sin(1/2*f*x+1/2*e)-49/48*cos(1/2*f*x+1/2*e)^4+7/48*sin(1/2*f*x+1/2 
*e)*cos(1/2*f*x+1/2*e)+7/16*cos(1/2*f*x+1/2*e)^2-7/64))*(c*cos(1/4*Pi+1/2* 
f*x+1/2*e)^2)^(1/2)*(a*sin(1/4*Pi+1/2*f*x+1/2*e)^2)^(1/2)/(210*f*cos(1/2*f 
*x+1/2*e)^2-105*f)
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.81 \[ \int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx=\frac {{\left (35 \, {\left (A - B\right )} a^{2} c^{3} \cos \left (f x + e\right )^{6} - 35 \, {\left (A - B\right )} a^{2} c^{3} + 2 \, {\left (15 \, B a^{2} c^{3} \cos \left (f x + e\right )^{6} + 3 \, {\left (7 \, A - B\right )} a^{2} c^{3} \cos \left (f x + e\right )^{4} + 4 \, {\left (7 \, A - B\right )} a^{2} c^{3} \cos \left (f x + e\right )^{2} + 8 \, {\left (7 \, A - B\right )} a^{2} c^{3}\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{210 \, f \cos \left (f x + e\right )} \] Input:

integrate((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(7/2),x 
, algorithm="fricas")
 

Output:

1/210*(35*(A - B)*a^2*c^3*cos(f*x + e)^6 - 35*(A - B)*a^2*c^3 + 2*(15*B*a^ 
2*c^3*cos(f*x + e)^6 + 3*(7*A - B)*a^2*c^3*cos(f*x + e)^4 + 4*(7*A - B)*a^ 
2*c^3*cos(f*x + e)^2 + 8*(7*A - B)*a^2*c^3)*sin(f*x + e))*sqrt(a*sin(f*x + 
 e) + a)*sqrt(-c*sin(f*x + e) + c)/(f*cos(f*x + e))
 

Sympy [F(-1)]

Timed out. \[ \int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx=\text {Timed out} \] Input:

integrate((a+a*sin(f*x+e))**(5/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))**(7/2) 
,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx=\int { {\left (B \sin \left (f x + e\right ) + A\right )} {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {7}{2}} \,d x } \] Input:

integrate((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(7/2),x 
, algorithm="maxima")
 

Output:

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^(5/2)*(-c*sin(f*x + e) 
 + c)^(7/2), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 355 vs. \(2 (174) = 348\).

Time = 0.30 (sec) , antiderivative size = 355, normalized size of antiderivative = 1.79 \[ \int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx =\text {Too large to display} \] Input:

integrate((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(7/2),x 
, algorithm="giac")
 

Output:

-16/105*(120*B*a^2*c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi 
 + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^14 - 70*A*a^2*c^3*sgn( 
cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1 
/4*pi + 1/2*f*x + 1/2*e)^12 - 350*B*a^2*c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/ 
2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^1 
2 + 168*A*a^2*c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/ 
2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^10 + 336*B*a^2*c^3*sgn(cos( 
-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*p 
i + 1/2*f*x + 1/2*e)^10 - 105*A*a^2*c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e) 
)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^8 - 1 
05*B*a^2*c^3*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x 
 + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)^8)*sqrt(a)*sqrt(c)/f
 

Mupad [B] (verification not implemented)

Time = 41.89 (sec) , antiderivative size = 383, normalized size of antiderivative = 1.93 \[ \int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx=\frac {{\mathrm {e}}^{-e\,7{}\mathrm {i}-f\,x\,7{}\mathrm {i}}\,\sqrt {c-c\,\sin \left (e+f\,x\right )}\,\left (-\frac {a^2\,c^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\cos \left (2\,e+2\,f\,x\right )\,\left (A\,1{}\mathrm {i}-B\,1{}\mathrm {i}\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}\,5{}\mathrm {i}}{32\,f}-\frac {a^2\,c^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\cos \left (4\,e+4\,f\,x\right )\,\left (A\,1{}\mathrm {i}-B\,1{}\mathrm {i}\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}\,1{}\mathrm {i}}{16\,f}-\frac {a^2\,c^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\cos \left (6\,e+6\,f\,x\right )\,\left (A\,1{}\mathrm {i}-B\,1{}\mathrm {i}\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}\,1{}\mathrm {i}}{96\,f}+\frac {a^2\,c^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\sin \left (5\,e+5\,f\,x\right )\,\left (4\,A+3\,B\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{160\,f}+\frac {5\,a^2\,c^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\sin \left (e+f\,x\right )\,\left (8\,A-B\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{32\,f}+\frac {a^2\,c^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\sin \left (3\,e+3\,f\,x\right )\,\left (20\,A+B\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{96\,f}+\frac {B\,a^2\,c^3\,{\mathrm {e}}^{e\,7{}\mathrm {i}+f\,x\,7{}\mathrm {i}}\,\sin \left (7\,e+7\,f\,x\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{224\,f}\right )}{2\,\cos \left (e+f\,x\right )} \] Input:

int((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(5/2)*(c - c*sin(e + f*x))^( 
7/2),x)
 

Output:

(exp(- e*7i - f*x*7i)*(c - c*sin(e + f*x))^(1/2)*((a^2*c^3*exp(e*7i + f*x* 
7i)*sin(5*e + 5*f*x)*(4*A + 3*B)*(a + a*sin(e + f*x))^(1/2))/(160*f) - (a^ 
2*c^3*exp(e*7i + f*x*7i)*cos(4*e + 4*f*x)*(A*1i - B*1i)*(a + a*sin(e + f*x 
))^(1/2)*1i)/(16*f) - (a^2*c^3*exp(e*7i + f*x*7i)*cos(6*e + 6*f*x)*(A*1i - 
 B*1i)*(a + a*sin(e + f*x))^(1/2)*1i)/(96*f) - (a^2*c^3*exp(e*7i + f*x*7i) 
*cos(2*e + 2*f*x)*(A*1i - B*1i)*(a + a*sin(e + f*x))^(1/2)*5i)/(32*f) + (5 
*a^2*c^3*exp(e*7i + f*x*7i)*sin(e + f*x)*(8*A - B)*(a + a*sin(e + f*x))^(1 
/2))/(32*f) + (a^2*c^3*exp(e*7i + f*x*7i)*sin(3*e + 3*f*x)*(20*A + B)*(a + 
 a*sin(e + f*x))^(1/2))/(96*f) + (B*a^2*c^3*exp(e*7i + f*x*7i)*sin(7*e + 7 
*f*x)*(a + a*sin(e + f*x))^(1/2))/(224*f)))/(2*cos(e + f*x))
 

Reduce [F]

\[ \int (a+a \sin (e+f x))^{5/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx=\sqrt {c}\, \sqrt {a}\, a^{2} c^{3} \left (-\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{6}d x \right ) b -\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{5}d x \right ) a +\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{5}d x \right ) b +\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{4}d x \right ) a +2 \left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{4}d x \right ) b +2 \left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{3}d x \right ) a -2 \left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{3}d x \right ) b -2 \left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{2}d x \right ) a -\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{2}d x \right ) b -\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )d x \right ) a +\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )d x \right ) b +\left (\int \sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}d x \right ) a \right ) \] Input:

int((a+a*sin(f*x+e))^(5/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(7/2),x)
 

Output:

sqrt(c)*sqrt(a)*a**2*c**3*( - int(sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f 
*x) + 1)*sin(e + f*x)**6,x)*b - int(sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + 
 f*x) + 1)*sin(e + f*x)**5,x)*a + int(sqrt(sin(e + f*x) + 1)*sqrt( - sin(e 
 + f*x) + 1)*sin(e + f*x)**5,x)*b + int(sqrt(sin(e + f*x) + 1)*sqrt( - sin 
(e + f*x) + 1)*sin(e + f*x)**4,x)*a + 2*int(sqrt(sin(e + f*x) + 1)*sqrt( - 
 sin(e + f*x) + 1)*sin(e + f*x)**4,x)*b + 2*int(sqrt(sin(e + f*x) + 1)*sqr 
t( - sin(e + f*x) + 1)*sin(e + f*x)**3,x)*a - 2*int(sqrt(sin(e + f*x) + 1) 
*sqrt( - sin(e + f*x) + 1)*sin(e + f*x)**3,x)*b - 2*int(sqrt(sin(e + f*x) 
+ 1)*sqrt( - sin(e + f*x) + 1)*sin(e + f*x)**2,x)*a - int(sqrt(sin(e + f*x 
) + 1)*sqrt( - sin(e + f*x) + 1)*sin(e + f*x)**2,x)*b - int(sqrt(sin(e + f 
*x) + 1)*sqrt( - sin(e + f*x) + 1)*sin(e + f*x),x)*a + int(sqrt(sin(e + f* 
x) + 1)*sqrt( - sin(e + f*x) + 1)*sin(e + f*x),x)*b + int(sqrt(sin(e + f*x 
) + 1)*sqrt( - sin(e + f*x) + 1),x)*a)