\(\int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)}} \, dx\) [175]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 40, antiderivative size = 146 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)}} \, dx=\frac {2 (A-B) c^2 \cos (e+f x) \log (1+\sin (e+f x))}{f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {(A-B) c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{f \sqrt {a+a \sin (e+f x)}}-\frac {B \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {a+a \sin (e+f x)}} \] Output:

2*(A-B)*c^2*cos(f*x+e)*ln(1+sin(f*x+e))/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin( 
f*x+e))^(1/2)+(A-B)*c*cos(f*x+e)*(c-c*sin(f*x+e))^(1/2)/f/(a+a*sin(f*x+e)) 
^(1/2)-1/2*B*cos(f*x+e)*(c-c*sin(f*x+e))^(3/2)/f/(a+a*sin(f*x+e))^(1/2)
 

Mathematica [A] (verified)

Time = 7.87 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.00 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)}} \, dx=-\frac {c \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (-1+\sin (e+f x)) \sqrt {c-c \sin (e+f x)} \left (B \cos (2 (e+f x))-4 \left (4 (-A+B) \log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )+(A-2 B) \sin (e+f x)\right )\right )}{4 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 \sqrt {a (1+\sin (e+f x))}} \] Input:

Integrate[((A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^(3/2))/Sqrt[a + a*Sin 
[e + f*x]],x]
 

Output:

-1/4*(c*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-1 + Sin[e + f*x])*Sqrt[c - 
 c*Sin[e + f*x]]*(B*Cos[2*(e + f*x)] - 4*(4*(-A + B)*Log[Cos[(e + f*x)/2] 
+ Sin[(e + f*x)/2]] + (A - 2*B)*Sin[e + f*x])))/(f*(Cos[(e + f*x)/2] - Sin 
[(e + f*x)/2])^3*Sqrt[a*(1 + Sin[e + f*x])])
 

Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.99, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.225, Rules used = {3042, 3452, 3042, 3219, 3042, 3216, 3042, 3146, 16}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c-c \sin (e+f x))^{3/2} (A+B \sin (e+f x))}{\sqrt {a \sin (e+f x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(c-c \sin (e+f x))^{3/2} (A+B \sin (e+f x))}{\sqrt {a \sin (e+f x)+a}}dx\)

\(\Big \downarrow \) 3452

\(\displaystyle (A-B) \int \frac {(c-c \sin (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a}}dx-\frac {B \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle (A-B) \int \frac {(c-c \sin (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a}}dx-\frac {B \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3219

\(\displaystyle (A-B) \left (2 c \int \frac {\sqrt {c-c \sin (e+f x)}}{\sqrt {\sin (e+f x) a+a}}dx+\frac {c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{f \sqrt {a \sin (e+f x)+a}}\right )-\frac {B \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle (A-B) \left (2 c \int \frac {\sqrt {c-c \sin (e+f x)}}{\sqrt {\sin (e+f x) a+a}}dx+\frac {c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{f \sqrt {a \sin (e+f x)+a}}\right )-\frac {B \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3216

\(\displaystyle (A-B) \left (\frac {2 a c^2 \cos (e+f x) \int \frac {\cos (e+f x)}{\sin (e+f x) a+a}dx}{\sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{f \sqrt {a \sin (e+f x)+a}}\right )-\frac {B \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle (A-B) \left (\frac {2 a c^2 \cos (e+f x) \int \frac {\cos (e+f x)}{\sin (e+f x) a+a}dx}{\sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{f \sqrt {a \sin (e+f x)+a}}\right )-\frac {B \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 3146

\(\displaystyle (A-B) \left (\frac {2 c^2 \cos (e+f x) \int \frac {1}{\sin (e+f x) a+a}d(a \sin (e+f x))}{f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{f \sqrt {a \sin (e+f x)+a}}\right )-\frac {B \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {a \sin (e+f x)+a}}\)

\(\Big \downarrow \) 16

\(\displaystyle (A-B) \left (\frac {2 c^2 \cos (e+f x) \log (a \sin (e+f x)+a)}{f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {c \cos (e+f x) \sqrt {c-c \sin (e+f x)}}{f \sqrt {a \sin (e+f x)+a}}\right )-\frac {B \cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 f \sqrt {a \sin (e+f x)+a}}\)

Input:

Int[((A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^(3/2))/Sqrt[a + a*Sin[e + f 
*x]],x]
 

Output:

-1/2*(B*Cos[e + f*x]*(c - c*Sin[e + f*x])^(3/2))/(f*Sqrt[a + a*Sin[e + f*x 
]]) + (A - B)*((2*c^2*Cos[e + f*x]*Log[a + a*Sin[e + f*x]])/(f*Sqrt[a + a* 
Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) + (c*Cos[e + f*x]*Sqrt[c - c*Sin[e 
 + f*x]])/(f*Sqrt[a + a*Sin[e + f*x]]))
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3146
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_.), x_Symbol] :> Simp[1/(b^p*f)   Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x 
)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && I 
ntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/ 
2])
 

rule 3216
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)]], x_Symbol] :> Simp[a*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x 
]]*Sqrt[c + d*Sin[e + f*x]]))   Int[Cos[e + f*x]/(c + d*Sin[e + f*x]), x], 
x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0 
]
 

rule 3219
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Simp[a*((2*m - 1)/(m + n 
))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; Fre 
eQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I 
GtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m]) &&  !( 
ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])
 

rule 3452
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(f*(m + 
n + 1))), x] - Simp[(B*c*(m - n) - A*d*(m + n + 1))/(d*(m + n + 1))   Int[( 
a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, 
e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, 
 -2^(-1)] && NeQ[m + n + 1, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(326\) vs. \(2(132)=264\).

Time = 7.09 (sec) , antiderivative size = 327, normalized size of antiderivative = 2.24

method result size
default \(-\frac {A \sqrt {4}\, \left (\sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}+2 \ln \left (\frac {2}{\cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+1}\right )-2 \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )\right )\right ) \sqrt {c \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, c \tan \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )}{f \sqrt {a \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}}-\frac {2 B c \left (\cos \left (\frac {f x}{2}+\frac {e}{2}\right )+\sin \left (\frac {f x}{2}+\frac {e}{2}\right )\right ) \left (\cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} \sin \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}-2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )+2 \ln \left (-\frac {2 \left (\cos \left (\frac {f x}{2}+\frac {e}{2}\right )+\sin \left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{\cos \left (\frac {f x}{2}+\frac {e}{2}\right )+1}\right )-2 \ln \left (\frac {2}{\cos \left (\frac {f x}{2}+\frac {e}{2}\right )+1}\right )\right ) \sqrt {-\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right ) c}}{f \left (\cos \left (\frac {f x}{2}+\frac {e}{2}\right )-\sin \left (\frac {f x}{2}+\frac {e}{2}\right )\right ) \sqrt {\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right ) a}}\) \(327\)
parts \(-\frac {A \sqrt {4}\, \left (\sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}+2 \ln \left (\frac {2}{\cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+1}\right )-2 \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )\right )\right ) \sqrt {c \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, c \tan \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )}{f \sqrt {a \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}}+\frac {2 B c \left (\cos \left (\frac {f x}{2}+\frac {e}{2}\right )+\sin \left (\frac {f x}{2}+\frac {e}{2}\right )\right ) \left (\cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} \sin \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}-2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )+2 \ln \left (-\frac {2 \left (\cos \left (\frac {f x}{2}+\frac {e}{2}\right )+\sin \left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{\cos \left (\frac {f x}{2}+\frac {e}{2}\right )+1}\right )-2 \ln \left (\frac {2}{\cos \left (\frac {f x}{2}+\frac {e}{2}\right )+1}\right )\right ) \sqrt {-\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right ) c}}{f \left (\sin \left (\frac {f x}{2}+\frac {e}{2}\right )-\cos \left (\frac {f x}{2}+\frac {e}{2}\right )\right ) \sqrt {\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right ) a}}\) \(327\)

Input:

int((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x,metho 
d=_RETURNVERBOSE)
 

Output:

-A/f*4^(1/2)*(sin(1/4*Pi+1/2*f*x+1/2*e)^2+2*ln(2/(cos(1/4*Pi+1/2*f*x+1/2*e 
)+1))-2*ln(-cot(1/4*Pi+1/2*f*x+1/2*e)+csc(1/4*Pi+1/2*f*x+1/2*e)))*(c*cos(1 
/4*Pi+1/2*f*x+1/2*e)^2)^(1/2)*c/(a*sin(1/4*Pi+1/2*f*x+1/2*e)^2)^(1/2)*tan( 
1/4*Pi+1/2*f*x+1/2*e)-2*B*c/f*(cos(1/2*f*x+1/2*e)+sin(1/2*f*x+1/2*e))*(cos 
(1/2*f*x+1/2*e)^2*sin(1/2*f*x+1/2*e)^2-2*sin(1/2*f*x+1/2*e)*cos(1/2*f*x+1/ 
2*e)+2*ln(-2*(cos(1/2*f*x+1/2*e)+sin(1/2*f*x+1/2*e))/(cos(1/2*f*x+1/2*e)+1 
))-2*ln(2/(cos(1/2*f*x+1/2*e)+1)))*(-(2*sin(1/2*f*x+1/2*e)*cos(1/2*f*x+1/2 
*e)-1)*c)^(1/2)/(cos(1/2*f*x+1/2*e)-sin(1/2*f*x+1/2*e))/((2*sin(1/2*f*x+1/ 
2*e)*cos(1/2*f*x+1/2*e)+1)*a)^(1/2)
 

Fricas [F]

\[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)}} \, dx=\int { \frac {{\left (B \sin \left (f x + e\right ) + A\right )} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}{\sqrt {a \sin \left (f x + e\right ) + a}} \,d x } \] Input:

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x 
, algorithm="fricas")
 

Output:

integral((B*c*cos(f*x + e)^2 - (A - B)*c*sin(f*x + e) + (A - B)*c)*sqrt(-c 
*sin(f*x + e) + c)/sqrt(a*sin(f*x + e) + a), x)
 

Sympy [F]

\[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)}} \, dx=\int \frac {\left (- c \left (\sin {\left (e + f x \right )} - 1\right )\right )^{\frac {3}{2}} \left (A + B \sin {\left (e + f x \right )}\right )}{\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )}}\, dx \] Input:

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))**(3/2)/(a+a*sin(f*x+e))**(1/2) 
,x)
 

Output:

Integral((-c*(sin(e + f*x) - 1))**(3/2)*(A + B*sin(e + f*x))/sqrt(a*(sin(e 
 + f*x) + 1)), x)
 

Maxima [F]

\[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)}} \, dx=\int { \frac {{\left (B \sin \left (f x + e\right ) + A\right )} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}{\sqrt {a \sin \left (f x + e\right ) + a}} \,d x } \] Input:

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x 
, algorithm="maxima")
 

Output:

integrate((B*sin(f*x + e) + A)*(-c*sin(f*x + e) + c)^(3/2)/sqrt(a*sin(f*x 
+ e) + a), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x 
, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)}} \, dx=\int \frac {\left (A+B\,\sin \left (e+f\,x\right )\right )\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}}{\sqrt {a+a\,\sin \left (e+f\,x\right )}} \,d x \] Input:

int(((A + B*sin(e + f*x))*(c - c*sin(e + f*x))^(3/2))/(a + a*sin(e + f*x)) 
^(1/2),x)
 

Output:

int(((A + B*sin(e + f*x))*(c - c*sin(e + f*x))^(3/2))/(a + a*sin(e + f*x)) 
^(1/2), x)
 

Reduce [F]

\[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)}} \, dx=\frac {\sqrt {c}\, \sqrt {a}\, c \left (-\left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )^{2}}{\sin \left (f x +e \right )+1}d x \right ) b -\left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )}{\sin \left (f x +e \right )+1}d x \right ) a +\left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )}{\sin \left (f x +e \right )+1}d x \right ) b +\left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}}{\sin \left (f x +e \right )+1}d x \right ) a \right )}{a} \] Input:

int((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2),x)
 

Output:

(sqrt(c)*sqrt(a)*c*( - int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 
1)*sin(e + f*x)**2)/(sin(e + f*x) + 1),x)*b - int((sqrt(sin(e + f*x) + 1)* 
sqrt( - sin(e + f*x) + 1)*sin(e + f*x))/(sin(e + f*x) + 1),x)*a + int((sqr 
t(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1)*sin(e + f*x))/(sin(e + f*x) 
+ 1),x)*b + int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1))/(sin(e 
+ f*x) + 1),x)*a))/a