\(\int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx\) [185]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 40, antiderivative size = 150 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=-\frac {(A-B) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {A \cos (e+f x)}{2 a f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {A \text {arctanh}(\sin (e+f x)) \cos (e+f x)}{2 a c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \] Output:

-1/2*(A-B)*cos(f*x+e)/f/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2)+1/2* 
A*cos(f*x+e)/a/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(3/2)+1/2*A*arcta 
nh(sin(f*x+e))*cos(f*x+e)/a/c/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1 
/2)
 

Mathematica [A] (verified)

Time = 4.01 (sec) , antiderivative size = 142, normalized size of antiderivative = 0.95 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=-\frac {\cos (e+f x) \left (2 B-A \log \left (1-\tan \left (\frac {1}{2} (e+f x)\right )\right )+A \log \left (1+\tan \left (\frac {1}{2} (e+f x)\right )\right )+A \cos (2 (e+f x)) \left (-\log \left (1-\tan \left (\frac {1}{2} (e+f x)\right )\right )+\log \left (1+\tan \left (\frac {1}{2} (e+f x)\right )\right )\right )+2 A \sin (e+f x)\right )}{4 c f (-1+\sin (e+f x)) (a (1+\sin (e+f x)))^{3/2} \sqrt {c-c \sin (e+f x)}} \] Input:

Integrate[(A + B*Sin[e + f*x])/((a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + 
f*x])^(3/2)),x]
 

Output:

-1/4*(Cos[e + f*x]*(2*B - A*Log[1 - Tan[(e + f*x)/2]] + A*Log[1 + Tan[(e + 
 f*x)/2]] + A*Cos[2*(e + f*x)]*(-Log[1 - Tan[(e + f*x)/2]] + Log[1 + Tan[( 
e + f*x)/2]]) + 2*A*Sin[e + f*x]))/(c*f*(-1 + Sin[e + f*x])*(a*(1 + Sin[e 
+ f*x]))^(3/2)*Sqrt[c - c*Sin[e + f*x]])
 

Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.99, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 3451, 3042, 3222, 3042, 3220, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sin (e+f x)}{(a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin (e+f x)}{(a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}dx\)

\(\Big \downarrow \) 3451

\(\displaystyle \frac {A \int \frac {1}{\sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{3/2}}dx}{a}-\frac {(A-B) \cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \int \frac {1}{\sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{3/2}}dx}{a}-\frac {(A-B) \cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3222

\(\displaystyle \frac {A \left (\frac {\int \frac {1}{\sqrt {\sin (e+f x) a+a} \sqrt {c-c \sin (e+f x)}}dx}{2 c}+\frac {\cos (e+f x)}{2 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}\right )}{a}-\frac {(A-B) \cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \left (\frac {\int \frac {1}{\sqrt {\sin (e+f x) a+a} \sqrt {c-c \sin (e+f x)}}dx}{2 c}+\frac {\cos (e+f x)}{2 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}\right )}{a}-\frac {(A-B) \cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3220

\(\displaystyle \frac {A \left (\frac {\cos (e+f x) \int \sec (e+f x)dx}{2 c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {\cos (e+f x)}{2 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}\right )}{a}-\frac {(A-B) \cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \left (\frac {\cos (e+f x) \int \csc \left (e+f x+\frac {\pi }{2}\right )dx}{2 c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {\cos (e+f x)}{2 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}\right )}{a}-\frac {(A-B) \cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {A \left (\frac {\cos (e+f x) \text {arctanh}(\sin (e+f x))}{2 c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {\cos (e+f x)}{2 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}\right )}{a}-\frac {(A-B) \cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}\)

Input:

Int[(A + B*Sin[e + f*x])/((a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^ 
(3/2)),x]
 

Output:

-1/2*((A - B)*Cos[e + f*x])/(f*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f 
*x])^(3/2)) + (A*(Cos[e + f*x]/(2*f*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e 
+ f*x])^(3/2)) + (ArcTanh[Sin[e + f*x]]*Cos[e + f*x])/(2*c*f*Sqrt[a + a*Si 
n[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])))/a
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3220
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_ 
.) + (f_.)*(x_)]]), x_Symbol] :> Simp[Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x] 
]*Sqrt[c + d*Sin[e + f*x]])   Int[1/Cos[e + f*x], x], x] /; FreeQ[{a, b, c, 
 d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
 

rule 3222
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*( 
(c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] + Simp[(m + n + 1)/(a*(2*m + 1) 
)   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; Free 
Q[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && 
 ILtQ[Simplify[m + n + 1], 0] && NeQ[m, -2^(-1)] && (SumSimplerQ[m, 1] || 
!SumSimplerQ[n, 1])
 

rule 3451
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] + Simp[(a*B*(m - n) + A*b*(m + n + 1))/(a*b*(2*m + 1)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[ 
{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0 
] && (LtQ[m, -2^(-1)] || (ILtQ[m + n, 0] &&  !SumSimplerQ[n, 1])) && NeQ[2* 
m + 1, 0]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(388\) vs. \(2(132)=264\).

Time = 7.70 (sec) , antiderivative size = 389, normalized size of antiderivative = 2.59

method result size
default \(\frac {A \sqrt {4}\, \left (-8 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2} \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )-1\right ) \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}-8 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2} \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+1\right ) \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}+8 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2} \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )\right ) \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}+\cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}-5 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}+2\right ) \sec \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right ) \csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )}{32 f \sqrt {a \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, \sqrt {c \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, a c}+\frac {2 B \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} \sin \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}}{a c f \left (-1+2 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}\right ) \sqrt {\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right ) a}\, \sqrt {-\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right ) c}}\) \(389\)
parts \(-\frac {A \sqrt {4}\, \left (8 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2} \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+1\right ) \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}+8 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2} \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )-1\right ) \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}-8 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2} \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )\right ) \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}-\cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}+5 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}-2\right ) \sec \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right ) \csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )}{32 f \sqrt {a \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, \sqrt {c \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, a c}+\frac {2 B \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} \sin \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}}{a c f \left (-1+2 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}\right ) \sqrt {\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right ) a}\, \sqrt {-\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right ) c}}\) \(391\)

Input:

int((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x,metho 
d=_RETURNVERBOSE)
 

Output:

1/32*A/f*4^(1/2)*(-8*cos(1/4*Pi+1/2*f*x+1/2*e)^2*ln(-cot(1/4*Pi+1/2*f*x+1/ 
2*e)+csc(1/4*Pi+1/2*f*x+1/2*e)-1)*sin(1/4*Pi+1/2*f*x+1/2*e)^2-8*cos(1/4*Pi 
+1/2*f*x+1/2*e)^2*ln(-cot(1/4*Pi+1/2*f*x+1/2*e)+csc(1/4*Pi+1/2*f*x+1/2*e)+ 
1)*sin(1/4*Pi+1/2*f*x+1/2*e)^2+8*cos(1/4*Pi+1/2*f*x+1/2*e)^2*ln(-cot(1/4*P 
i+1/2*f*x+1/2*e)+csc(1/4*Pi+1/2*f*x+1/2*e))*sin(1/4*Pi+1/2*f*x+1/2*e)^2+co 
s(1/4*Pi+1/2*f*x+1/2*e)^4-5*cos(1/4*Pi+1/2*f*x+1/2*e)^2+2)/(a*sin(1/4*Pi+1 
/2*f*x+1/2*e)^2)^(1/2)/(c*cos(1/4*Pi+1/2*f*x+1/2*e)^2)^(1/2)/a/c*sec(1/4*P 
i+1/2*f*x+1/2*e)*csc(1/4*Pi+1/2*f*x+1/2*e)+2*B/a/c/f*cos(1/2*f*x+1/2*e)^2* 
sin(1/2*f*x+1/2*e)^2/(-1+2*cos(1/2*f*x+1/2*e)^2)/((2*sin(1/2*f*x+1/2*e)*co 
s(1/2*f*x+1/2*e)+1)*a)^(1/2)/(-(2*sin(1/2*f*x+1/2*e)*cos(1/2*f*x+1/2*e)-1) 
*c)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.80 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\left [\frac {\sqrt {a c} A \cos \left (f x + e\right )^{3} \log \left (-\frac {a c \cos \left (f x + e\right )^{3} - 2 \, a c \cos \left (f x + e\right ) - 2 \, \sqrt {a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{\cos \left (f x + e\right )^{3}}\right ) + 2 \, {\left (A \sin \left (f x + e\right ) + B\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{4 \, a^{2} c^{2} f \cos \left (f x + e\right )^{3}}, -\frac {\sqrt {-a c} A \arctan \left (\frac {\sqrt {-a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{a c \cos \left (f x + e\right )}\right ) \cos \left (f x + e\right )^{3} - {\left (A \sin \left (f x + e\right ) + B\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{2 \, a^{2} c^{2} f \cos \left (f x + e\right )^{3}}\right ] \] Input:

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x 
, algorithm="fricas")
 

Output:

[1/4*(sqrt(a*c)*A*cos(f*x + e)^3*log(-(a*c*cos(f*x + e)^3 - 2*a*c*cos(f*x 
+ e) - 2*sqrt(a*c)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*sin( 
f*x + e))/cos(f*x + e)^3) + 2*(A*sin(f*x + e) + B)*sqrt(a*sin(f*x + e) + a 
)*sqrt(-c*sin(f*x + e) + c))/(a^2*c^2*f*cos(f*x + e)^3), -1/2*(sqrt(-a*c)* 
A*arctan(sqrt(-a*c)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*sin 
(f*x + e)/(a*c*cos(f*x + e)))*cos(f*x + e)^3 - (A*sin(f*x + e) + B)*sqrt(a 
*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c))/(a^2*c^2*f*cos(f*x + e)^3)]
 

Sympy [F]

\[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\int \frac {A + B \sin {\left (e + f x \right )}}{\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}} \left (- c \left (\sin {\left (e + f x \right )} - 1\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))**(3/2)/(c-c*sin(f*x+e))**(3/2) 
,x)
 

Output:

Integral((A + B*sin(e + f*x))/((a*(sin(e + f*x) + 1))**(3/2)*(-c*(sin(e + 
f*x) - 1))**(3/2)), x)
 

Maxima [F]

\[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\int { \frac {B \sin \left (f x + e\right ) + A}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x 
, algorithm="maxima")
 

Output:

integrate((B*sin(f*x + e) + A)/((a*sin(f*x + e) + a)^(3/2)*(-c*sin(f*x + e 
) + c)^(3/2)), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x 
, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m i_lex_is_greater E 
rror: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\int \frac {A+B\,\sin \left (e+f\,x\right )}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \] Input:

int((A + B*sin(e + f*x))/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^ 
(3/2)),x)
 

Output:

int((A + B*sin(e + f*x))/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^ 
(3/2)), x)
 

Reduce [F]

\[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\frac {\sqrt {c}\, \sqrt {a}\, \left (\left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )}{\sin \left (f x +e \right )^{4}-2 \sin \left (f x +e \right )^{2}+1}d x \right ) b +\left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}}{\sin \left (f x +e \right )^{4}-2 \sin \left (f x +e \right )^{2}+1}d x \right ) a \right )}{a^{2} c^{2}} \] Input:

int((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x)
 

Output:

(sqrt(c)*sqrt(a)*(int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1)*si 
n(e + f*x))/(sin(e + f*x)**4 - 2*sin(e + f*x)**2 + 1),x)*b + int((sqrt(sin 
(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1))/(sin(e + f*x)**4 - 2*sin(e + f*x 
)**2 + 1),x)*a))/(a**2*c**2)