\(\int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx\) [194]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 40, antiderivative size = 245 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=-\frac {(A-B) \cos (e+f x)}{4 f (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}}-\frac {A \cos (e+f x)}{2 a f (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}+\frac {3 A \cos (e+f x)}{8 a^2 f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}+\frac {3 A \cos (e+f x)}{8 a^2 c f \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}+\frac {3 A \text {arctanh}(\sin (e+f x)) \cos (e+f x)}{8 a^2 c^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \] Output:

-1/4*(A-B)*cos(f*x+e)/f/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(5/2)-1/2* 
A*cos(f*x+e)/a/f/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(5/2)+3/8*A*cos(f 
*x+e)/a^2/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(5/2)+3/8*A*cos(f*x+e) 
/a^2/c/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(3/2)+3/8*A*arctanh(sin(f 
*x+e))*cos(f*x+e)/a^2/c^2/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)
 

Mathematica [A] (verified)

Time = 4.96 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.37 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\frac {\cos ^5(e+f x) \left (3 A \text {arctanh}(\sin (e+f x))+\frac {1}{4} \sec ^4(e+f x) (8 B+11 A \sin (e+f x)+3 A \sin (3 (e+f x)))\right )}{8 f (a (1+\sin (e+f x)))^{5/2} (c-c \sin (e+f x))^{5/2}} \] Input:

Integrate[(A + B*Sin[e + f*x])/((a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e + 
f*x])^(5/2)),x]
 

Output:

(Cos[e + f*x]^5*(3*A*ArcTanh[Sin[e + f*x]] + (Sec[e + f*x]^4*(8*B + 11*A*S 
in[e + f*x] + 3*A*Sin[3*(e + f*x)]))/4))/(8*f*(a*(1 + Sin[e + f*x]))^(5/2) 
*(c - c*Sin[e + f*x])^(5/2))
 

Rubi [A] (verified)

Time = 1.41 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.01, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {3042, 3451, 3042, 3222, 3042, 3222, 3042, 3222, 3042, 3220, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sin (e+f x)}{(a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin (e+f x)}{(a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{5/2}}dx\)

\(\Big \downarrow \) 3451

\(\displaystyle \frac {A \int \frac {1}{(\sin (e+f x) a+a)^{3/2} (c-c \sin (e+f x))^{5/2}}dx}{a}-\frac {(A-B) \cos (e+f x)}{4 f (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \int \frac {1}{(\sin (e+f x) a+a)^{3/2} (c-c \sin (e+f x))^{5/2}}dx}{a}-\frac {(A-B) \cos (e+f x)}{4 f (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{5/2}}\)

\(\Big \downarrow \) 3222

\(\displaystyle \frac {A \left (\frac {3 \int \frac {1}{\sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{5/2}}dx}{2 a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{5/2}}\right )}{a}-\frac {(A-B) \cos (e+f x)}{4 f (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \left (\frac {3 \int \frac {1}{\sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{5/2}}dx}{2 a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{5/2}}\right )}{a}-\frac {(A-B) \cos (e+f x)}{4 f (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{5/2}}\)

\(\Big \downarrow \) 3222

\(\displaystyle \frac {A \left (\frac {3 \left (\frac {\int \frac {1}{\sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{3/2}}dx}{2 c}+\frac {\cos (e+f x)}{4 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}\right )}{2 a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{5/2}}\right )}{a}-\frac {(A-B) \cos (e+f x)}{4 f (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \left (\frac {3 \left (\frac {\int \frac {1}{\sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{3/2}}dx}{2 c}+\frac {\cos (e+f x)}{4 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}\right )}{2 a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{5/2}}\right )}{a}-\frac {(A-B) \cos (e+f x)}{4 f (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{5/2}}\)

\(\Big \downarrow \) 3222

\(\displaystyle \frac {A \left (\frac {3 \left (\frac {\frac {\int \frac {1}{\sqrt {\sin (e+f x) a+a} \sqrt {c-c \sin (e+f x)}}dx}{2 c}+\frac {\cos (e+f x)}{2 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}}{2 c}+\frac {\cos (e+f x)}{4 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}\right )}{2 a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{5/2}}\right )}{a}-\frac {(A-B) \cos (e+f x)}{4 f (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \left (\frac {3 \left (\frac {\frac {\int \frac {1}{\sqrt {\sin (e+f x) a+a} \sqrt {c-c \sin (e+f x)}}dx}{2 c}+\frac {\cos (e+f x)}{2 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}}{2 c}+\frac {\cos (e+f x)}{4 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}\right )}{2 a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{5/2}}\right )}{a}-\frac {(A-B) \cos (e+f x)}{4 f (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{5/2}}\)

\(\Big \downarrow \) 3220

\(\displaystyle \frac {A \left (\frac {3 \left (\frac {\frac {\cos (e+f x) \int \sec (e+f x)dx}{2 c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {\cos (e+f x)}{2 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}}{2 c}+\frac {\cos (e+f x)}{4 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}\right )}{2 a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{5/2}}\right )}{a}-\frac {(A-B) \cos (e+f x)}{4 f (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \left (\frac {3 \left (\frac {\frac {\cos (e+f x) \int \csc \left (e+f x+\frac {\pi }{2}\right )dx}{2 c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {\cos (e+f x)}{2 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}}{2 c}+\frac {\cos (e+f x)}{4 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}\right )}{2 a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{5/2}}\right )}{a}-\frac {(A-B) \cos (e+f x)}{4 f (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{5/2}}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {A \left (\frac {3 \left (\frac {\frac {\cos (e+f x) \text {arctanh}(\sin (e+f x))}{2 c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {\cos (e+f x)}{2 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}}{2 c}+\frac {\cos (e+f x)}{4 f \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}\right )}{2 a}-\frac {\cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{5/2}}\right )}{a}-\frac {(A-B) \cos (e+f x)}{4 f (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{5/2}}\)

Input:

Int[(A + B*Sin[e + f*x])/((a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e + f*x])^ 
(5/2)),x]
 

Output:

-1/4*((A - B)*Cos[e + f*x])/(f*(a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e + f 
*x])^(5/2)) + (A*(-1/2*Cos[e + f*x]/(f*(a + a*Sin[e + f*x])^(3/2)*(c - c*S 
in[e + f*x])^(5/2)) + (3*(Cos[e + f*x]/(4*f*Sqrt[a + a*Sin[e + f*x]]*(c - 
c*Sin[e + f*x])^(5/2)) + (Cos[e + f*x]/(2*f*Sqrt[a + a*Sin[e + f*x]]*(c - 
c*Sin[e + f*x])^(3/2)) + (ArcTanh[Sin[e + f*x]]*Cos[e + f*x])/(2*c*f*Sqrt[ 
a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]))/(2*c)))/(2*a)))/a
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3220
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_ 
.) + (f_.)*(x_)]]), x_Symbol] :> Simp[Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x] 
]*Sqrt[c + d*Sin[e + f*x]])   Int[1/Cos[e + f*x], x], x] /; FreeQ[{a, b, c, 
 d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
 

rule 3222
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*( 
(c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] + Simp[(m + n + 1)/(a*(2*m + 1) 
)   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; Free 
Q[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && 
 ILtQ[Simplify[m + n + 1], 0] && NeQ[m, -2^(-1)] && (SumSimplerQ[m, 1] || 
!SumSimplerQ[n, 1])
 

rule 3451
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] + Simp[(a*B*(m - n) + A*b*(m + n + 1))/(a*b*(2*m + 1)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[ 
{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0 
] && (LtQ[m, -2^(-1)] || (ILtQ[m + n, 0] &&  !SumSimplerQ[n, 1])) && NeQ[2* 
m + 1, 0]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(454\) vs. \(2(215)=430\).

Time = 7.93 (sec) , antiderivative size = 455, normalized size of antiderivative = 1.86

method result size
default \(-\frac {A \sqrt {4}\, \left (192 \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+1\right ) \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4} \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}+192 \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )-1\right ) \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4} \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}-192 \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )\right ) \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4} \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}+29 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{8}-154 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{6}+173 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}-32 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}-8\right ) \sec \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{3} \csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{3}}{1024 f \sqrt {a \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, \sqrt {c \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, a^{2} c^{2}}+\frac {2 B \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} \left (2 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{4}-2 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}+1\right ) \sin \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}}{a^{2} c^{2} f \left (-1+2 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}\right )^{3} \sqrt {\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right ) a}\, \sqrt {-\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right ) c}}\) \(455\)
parts \(-\frac {A \sqrt {4}\, \left (192 \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+1\right ) \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4} \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}+192 \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )-1\right ) \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4} \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}-192 \ln \left (-\cot \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )+\csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )\right ) \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4} \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}+29 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{8}-154 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{6}+173 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{4}-32 \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}-8\right ) \sec \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{3} \csc \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{3}}{1024 f \sqrt {a \sin \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, \sqrt {c \cos \left (\frac {\pi }{4}+\frac {f x}{2}+\frac {e}{2}\right )^{2}}\, a^{2} c^{2}}+\frac {2 B \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2} \left (2 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{4}-2 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}+1\right ) \sin \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}}{a^{2} c^{2} f \left (-1+2 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}\right )^{3} \sqrt {\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right ) a}\, \sqrt {-\left (2 \sin \left (\frac {f x}{2}+\frac {e}{2}\right ) \cos \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right ) c}}\) \(455\)

Input:

int((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(5/2),x,metho 
d=_RETURNVERBOSE)
 

Output:

-1/1024*A/f*4^(1/2)*(192*ln(-cot(1/4*Pi+1/2*f*x+1/2*e)+csc(1/4*Pi+1/2*f*x+ 
1/2*e)+1)*sin(1/4*Pi+1/2*f*x+1/2*e)^4*cos(1/4*Pi+1/2*f*x+1/2*e)^4+192*ln(- 
cot(1/4*Pi+1/2*f*x+1/2*e)+csc(1/4*Pi+1/2*f*x+1/2*e)-1)*sin(1/4*Pi+1/2*f*x+ 
1/2*e)^4*cos(1/4*Pi+1/2*f*x+1/2*e)^4-192*ln(-cot(1/4*Pi+1/2*f*x+1/2*e)+csc 
(1/4*Pi+1/2*f*x+1/2*e))*sin(1/4*Pi+1/2*f*x+1/2*e)^4*cos(1/4*Pi+1/2*f*x+1/2 
*e)^4+29*cos(1/4*Pi+1/2*f*x+1/2*e)^8-154*cos(1/4*Pi+1/2*f*x+1/2*e)^6+173*c 
os(1/4*Pi+1/2*f*x+1/2*e)^4-32*cos(1/4*Pi+1/2*f*x+1/2*e)^2-8)/(a*sin(1/4*Pi 
+1/2*f*x+1/2*e)^2)^(1/2)/(c*cos(1/4*Pi+1/2*f*x+1/2*e)^2)^(1/2)/a^2/c^2*sec 
(1/4*Pi+1/2*f*x+1/2*e)^3*csc(1/4*Pi+1/2*f*x+1/2*e)^3+2*B/a^2/c^2/f*cos(1/2 
*f*x+1/2*e)^2*(2*cos(1/2*f*x+1/2*e)^4-2*cos(1/2*f*x+1/2*e)^2+1)*sin(1/2*f* 
x+1/2*e)^2/(-1+2*cos(1/2*f*x+1/2*e)^2)^3/((2*sin(1/2*f*x+1/2*e)*cos(1/2*f* 
x+1/2*e)+1)*a)^(1/2)/(-(2*sin(1/2*f*x+1/2*e)*cos(1/2*f*x+1/2*e)-1)*c)^(1/2 
)
 

Fricas [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 304, normalized size of antiderivative = 1.24 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\left [\frac {3 \, \sqrt {a c} A \cos \left (f x + e\right )^{5} \log \left (-\frac {a c \cos \left (f x + e\right )^{3} - 2 \, a c \cos \left (f x + e\right ) - 2 \, \sqrt {a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{\cos \left (f x + e\right )^{3}}\right ) + 2 \, {\left ({\left (3 \, A \cos \left (f x + e\right )^{2} + 2 \, A\right )} \sin \left (f x + e\right ) + 2 \, B\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{16 \, a^{3} c^{3} f \cos \left (f x + e\right )^{5}}, -\frac {3 \, \sqrt {-a c} A \arctan \left (\frac {\sqrt {-a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{a c \cos \left (f x + e\right )}\right ) \cos \left (f x + e\right )^{5} - {\left ({\left (3 \, A \cos \left (f x + e\right )^{2} + 2 \, A\right )} \sin \left (f x + e\right ) + 2 \, B\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{8 \, a^{3} c^{3} f \cos \left (f x + e\right )^{5}}\right ] \] Input:

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(5/2),x 
, algorithm="fricas")
 

Output:

[1/16*(3*sqrt(a*c)*A*cos(f*x + e)^5*log(-(a*c*cos(f*x + e)^3 - 2*a*c*cos(f 
*x + e) - 2*sqrt(a*c)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*s 
in(f*x + e))/cos(f*x + e)^3) + 2*((3*A*cos(f*x + e)^2 + 2*A)*sin(f*x + e) 
+ 2*B)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c))/(a^3*c^3*f*cos( 
f*x + e)^5), -1/8*(3*sqrt(-a*c)*A*arctan(sqrt(-a*c)*sqrt(a*sin(f*x + e) + 
a)*sqrt(-c*sin(f*x + e) + c)*sin(f*x + e)/(a*c*cos(f*x + e)))*cos(f*x + e) 
^5 - ((3*A*cos(f*x + e)^2 + 2*A)*sin(f*x + e) + 2*B)*sqrt(a*sin(f*x + e) + 
 a)*sqrt(-c*sin(f*x + e) + c))/(a^3*c^3*f*cos(f*x + e)^5)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))**(5/2)/(c-c*sin(f*x+e))**(5/2) 
,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\int { \frac {B \sin \left (f x + e\right ) + A}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(5/2),x 
, algorithm="maxima")
 

Output:

integrate((B*sin(f*x + e) + A)/((a*sin(f*x + e) + a)^(5/2)*(-c*sin(f*x + e 
) + c)^(5/2)), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(5/2),x 
, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m i_lex_is_greater E 
rror: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=\int \frac {A+B\,\sin \left (e+f\,x\right )}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{5/2}\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \] Input:

int((A + B*sin(e + f*x))/((a + a*sin(e + f*x))^(5/2)*(c - c*sin(e + f*x))^ 
(5/2)),x)
 

Output:

int((A + B*sin(e + f*x))/((a + a*sin(e + f*x))^(5/2)*(c - c*sin(e + f*x))^ 
(5/2)), x)
 

Reduce [F]

\[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2}} \, dx=-\frac {\sqrt {c}\, \sqrt {a}\, \left (\left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}\, \sin \left (f x +e \right )}{\sin \left (f x +e \right )^{6}-3 \sin \left (f x +e \right )^{4}+3 \sin \left (f x +e \right )^{2}-1}d x \right ) b +\left (\int \frac {\sqrt {\sin \left (f x +e \right )+1}\, \sqrt {-\sin \left (f x +e \right )+1}}{\sin \left (f x +e \right )^{6}-3 \sin \left (f x +e \right )^{4}+3 \sin \left (f x +e \right )^{2}-1}d x \right ) a \right )}{a^{3} c^{3}} \] Input:

int((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(5/2),x)
 

Output:

( - sqrt(c)*sqrt(a)*(int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1) 
*sin(e + f*x))/(sin(e + f*x)**6 - 3*sin(e + f*x)**4 + 3*sin(e + f*x)**2 - 
1),x)*b + int((sqrt(sin(e + f*x) + 1)*sqrt( - sin(e + f*x) + 1))/(sin(e + 
f*x)**6 - 3*sin(e + f*x)**4 + 3*sin(e + f*x)**2 - 1),x)*a))/(a**3*c**3)