\(\int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) (c-c \sin (e+f x))^4} \, dx\) [59]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 36, antiderivative size = 142 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) (c-c \sin (e+f x))^4} \, dx=\frac {(A+B) \sec (e+f x)}{7 a c f (c-c \sin (e+f x))^3}+\frac {(4 A-3 B) \sec (e+f x)}{35 a f \left (c^2-c^2 \sin (e+f x)\right )^2}+\frac {(4 A-3 B) \sec (e+f x)}{35 a f \left (c^4-c^4 \sin (e+f x)\right )}+\frac {2 (4 A-3 B) \tan (e+f x)}{35 a c^4 f} \] Output:

1/7*(A+B)*sec(f*x+e)/a/c/f/(c-c*sin(f*x+e))^3+1/35*(4*A-3*B)*sec(f*x+e)/a/ 
f/(c^2-c^2*sin(f*x+e))^2+1/35*(4*A-3*B)*sec(f*x+e)/a/f/(c^4-c^4*sin(f*x+e) 
)+2/35*(4*A-3*B)*tan(f*x+e)/a/c^4/f
 

Mathematica [A] (verified)

Time = 4.99 (sec) , antiderivative size = 240, normalized size of antiderivative = 1.69 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) (c-c \sin (e+f x))^4} \, dx=\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (560 B+(-406 A+182 B) \cos (e+f x)+224 (4 A-3 B) \cos (2 (e+f x))+174 A \cos (3 (e+f x))-78 B \cos (3 (e+f x))-64 A \cos (4 (e+f x))+48 B \cos (4 (e+f x))+896 A \sin (e+f x)-672 B \sin (e+f x)+406 A \sin (2 (e+f x))-182 B \sin (2 (e+f x))-384 A \sin (3 (e+f x))+288 B \sin (3 (e+f x))-29 A \sin (4 (e+f x))+13 B \sin (4 (e+f x)))}{2240 a c^4 f (-1+\sin (e+f x))^4 (1+\sin (e+f x))} \] Input:

Integrate[(A + B*Sin[e + f*x])/((a + a*Sin[e + f*x])*(c - c*Sin[e + f*x])^ 
4),x]
 

Output:

((Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2 
])*(560*B + (-406*A + 182*B)*Cos[e + f*x] + 224*(4*A - 3*B)*Cos[2*(e + f*x 
)] + 174*A*Cos[3*(e + f*x)] - 78*B*Cos[3*(e + f*x)] - 64*A*Cos[4*(e + f*x) 
] + 48*B*Cos[4*(e + f*x)] + 896*A*Sin[e + f*x] - 672*B*Sin[e + f*x] + 406* 
A*Sin[2*(e + f*x)] - 182*B*Sin[2*(e + f*x)] - 384*A*Sin[3*(e + f*x)] + 288 
*B*Sin[3*(e + f*x)] - 29*A*Sin[4*(e + f*x)] + 13*B*Sin[4*(e + f*x)]))/(224 
0*a*c^4*f*(-1 + Sin[e + f*x])^4*(1 + Sin[e + f*x]))
 

Rubi [A] (verified)

Time = 0.81 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.90, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.306, Rules used = {3042, 3446, 3042, 3338, 3042, 3151, 3042, 3151, 3042, 4254, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sin (e+f x)}{(a \sin (e+f x)+a) (c-c \sin (e+f x))^4} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin (e+f x)}{(a \sin (e+f x)+a) (c-c \sin (e+f x))^4}dx\)

\(\Big \downarrow \) 3446

\(\displaystyle \frac {\int \frac {\sec ^2(e+f x) (A+B \sin (e+f x))}{(c-c \sin (e+f x))^3}dx}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {A+B \sin (e+f x)}{\cos (e+f x)^2 (c-c \sin (e+f x))^3}dx}{a c}\)

\(\Big \downarrow \) 3338

\(\displaystyle \frac {\frac {(4 A-3 B) \int \frac {\sec ^2(e+f x)}{(c-c \sin (e+f x))^2}dx}{7 c}+\frac {(A+B) \sec (e+f x)}{7 f (c-c \sin (e+f x))^3}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {(4 A-3 B) \int \frac {1}{\cos (e+f x)^2 (c-c \sin (e+f x))^2}dx}{7 c}+\frac {(A+B) \sec (e+f x)}{7 f (c-c \sin (e+f x))^3}}{a c}\)

\(\Big \downarrow \) 3151

\(\displaystyle \frac {\frac {(4 A-3 B) \left (\frac {3 \int \frac {\sec ^2(e+f x)}{c-c \sin (e+f x)}dx}{5 c}+\frac {\sec (e+f x)}{5 f (c-c \sin (e+f x))^2}\right )}{7 c}+\frac {(A+B) \sec (e+f x)}{7 f (c-c \sin (e+f x))^3}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {(4 A-3 B) \left (\frac {3 \int \frac {1}{\cos (e+f x)^2 (c-c \sin (e+f x))}dx}{5 c}+\frac {\sec (e+f x)}{5 f (c-c \sin (e+f x))^2}\right )}{7 c}+\frac {(A+B) \sec (e+f x)}{7 f (c-c \sin (e+f x))^3}}{a c}\)

\(\Big \downarrow \) 3151

\(\displaystyle \frac {\frac {(4 A-3 B) \left (\frac {3 \left (\frac {2 \int \sec ^2(e+f x)dx}{3 c}+\frac {\sec (e+f x)}{3 f (c-c \sin (e+f x))}\right )}{5 c}+\frac {\sec (e+f x)}{5 f (c-c \sin (e+f x))^2}\right )}{7 c}+\frac {(A+B) \sec (e+f x)}{7 f (c-c \sin (e+f x))^3}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {(4 A-3 B) \left (\frac {3 \left (\frac {2 \int \csc \left (e+f x+\frac {\pi }{2}\right )^2dx}{3 c}+\frac {\sec (e+f x)}{3 f (c-c \sin (e+f x))}\right )}{5 c}+\frac {\sec (e+f x)}{5 f (c-c \sin (e+f x))^2}\right )}{7 c}+\frac {(A+B) \sec (e+f x)}{7 f (c-c \sin (e+f x))^3}}{a c}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {\frac {(4 A-3 B) \left (\frac {3 \left (\frac {\sec (e+f x)}{3 f (c-c \sin (e+f x))}-\frac {2 \int 1d(-\tan (e+f x))}{3 c f}\right )}{5 c}+\frac {\sec (e+f x)}{5 f (c-c \sin (e+f x))^2}\right )}{7 c}+\frac {(A+B) \sec (e+f x)}{7 f (c-c \sin (e+f x))^3}}{a c}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {\frac {(A+B) \sec (e+f x)}{7 f (c-c \sin (e+f x))^3}+\frac {(4 A-3 B) \left (\frac {\sec (e+f x)}{5 f (c-c \sin (e+f x))^2}+\frac {3 \left (\frac {2 \tan (e+f x)}{3 c f}+\frac {\sec (e+f x)}{3 f (c-c \sin (e+f x))}\right )}{5 c}\right )}{7 c}}{a c}\)

Input:

Int[(A + B*Sin[e + f*x])/((a + a*Sin[e + f*x])*(c - c*Sin[e + f*x])^4),x]
 

Output:

(((A + B)*Sec[e + f*x])/(7*f*(c - c*Sin[e + f*x])^3) + ((4*A - 3*B)*(Sec[e 
 + f*x]/(5*f*(c - c*Sin[e + f*x])^2) + (3*(Sec[e + f*x]/(3*f*(c - c*Sin[e 
+ f*x])) + (2*Tan[e + f*x])/(3*c*f)))/(5*c)))/(7*c))/(a*c)
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3151
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x 
])^m/(a*f*g*Simplify[2*m + p + 1])), x] + Simp[Simplify[m + p + 1]/(a*Simpl 
ify[2*m + p + 1])   Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x] 
, x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[Simpli 
fy[m + p + 1], 0] && NeQ[2*m + p + 1, 0] &&  !IGtQ[m, 0]
 

rule 3338
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - 
 a*d)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(2*m + p + 1) 
)), x] + Simp[(a*d*m + b*c*(m + p + 1))/(a*b*(2*m + p + 1))   Int[(g*Cos[e 
+ f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f, 
g, m, p}, x] && EqQ[a^2 - b^2, 0] && (LtQ[m, -1] || ILtQ[Simplify[m + p], 0 
]) && NeQ[2*m + p + 1, 0]
 

rule 3446
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Si 
mp[a^m*c^m   Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A + B*Sin 
[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a* 
d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] 
&& GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.86 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.96

method result size
risch \(\frac {4 i \left (56 i A \,{\mathrm e}^{3 i \left (f x +e \right )}-42 i B \,{\mathrm e}^{3 i \left (f x +e \right )}+35 B \,{\mathrm e}^{4 i \left (f x +e \right )}-24 i A \,{\mathrm e}^{i \left (f x +e \right )}+56 A \,{\mathrm e}^{2 i \left (f x +e \right )}+18 i B \,{\mathrm e}^{i \left (f x +e \right )}-42 B \,{\mathrm e}^{2 i \left (f x +e \right )}-4 A +3 B \right )}{35 \left ({\mathrm e}^{i \left (f x +e \right )}-i\right )^{7} \left ({\mathrm e}^{i \left (f x +e \right )}+i\right ) f a \,c^{4}}\) \(136\)
parallelrisch \(\frac {-70 A \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{7}+\left (210 A -70 B \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{6}+\left (-350 A +140 B \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{5}+\left (210 A -210 B \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{4}+\left (14 A +112 B \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{3}+\left (-154 A -42 B \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}+\left (86 A -12 B \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )-26 A +2 B}{35 f a \,c^{4} \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right ) \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{7}}\) \(171\)
derivativedivides \(\frac {-\frac {2 \left (\frac {A}{16}-\frac {B}{16}\right )}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1}-\frac {2 \left (4 A +4 B \right )}{7 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{7}}-\frac {12 A +12 B}{3 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{6}}-\frac {18 A +14 B}{2 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{4}}-\frac {2 \left (19 A +17 B \right )}{5 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{5}}-\frac {2 \left (\frac {15 A}{16}+\frac {B}{16}\right )}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1}-\frac {\frac {17 A}{4}+\frac {7 B}{4}}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{2}}-\frac {2 \left (\frac {45 A}{4}+\frac {27 B}{4}\right )}{3 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{3}}}{f a \,c^{4}}\) \(189\)
default \(\frac {-\frac {2 \left (\frac {A}{16}-\frac {B}{16}\right )}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1}-\frac {2 \left (4 A +4 B \right )}{7 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{7}}-\frac {12 A +12 B}{3 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{6}}-\frac {18 A +14 B}{2 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{4}}-\frac {2 \left (19 A +17 B \right )}{5 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{5}}-\frac {2 \left (\frac {15 A}{16}+\frac {B}{16}\right )}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1}-\frac {\frac {17 A}{4}+\frac {7 B}{4}}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{2}}-\frac {2 \left (\frac {45 A}{4}+\frac {27 B}{4}\right )}{3 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{3}}}{f a \,c^{4}}\) \(189\)
norman \(\frac {\frac {\left (6 A -2 B \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{8}}{a f c}-\frac {26 A -2 B}{35 a f c}-\frac {12 \left (4 A -3 B \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{5}}{5 a f c}-\frac {2 A \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{9}}{a f c}+\frac {2 \left (4 A -18 B \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{4}}{5 a f c}-\frac {4 \left (3 A -B \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{7}}{a f c}+\frac {20 \left (A +B \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{3}}{7 a f c}+\frac {2 \left (6 A -4 B \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{6}}{a f c}-\frac {\left (36 A +8 B \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}}{7 a f c}+\frac {2 \left (43 A -6 B \right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{35 a f c}}{\left (1+\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}\right ) \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right ) c^{3} \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )^{7}}\) \(313\)

Input:

int((A+B*sin(f*x+e))/(a+a*sin(f*x+e))/(c-c*sin(f*x+e))^4,x,method=_RETURNV 
ERBOSE)
 

Output:

4/35*I*(56*I*A*exp(3*I*(f*x+e))-42*I*B*exp(3*I*(f*x+e))+35*B*exp(4*I*(f*x+ 
e))-24*I*A*exp(I*(f*x+e))+56*A*exp(2*I*(f*x+e))+18*I*B*exp(I*(f*x+e))-42*B 
*exp(2*I*(f*x+e))-4*A+3*B)/(exp(I*(f*x+e))-I)^7/(exp(I*(f*x+e))+I)/f/a/c^4
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.99 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) (c-c \sin (e+f x))^4} \, dx=\frac {2 \, {\left (4 \, A - 3 \, B\right )} \cos \left (f x + e\right )^{4} - 9 \, {\left (4 \, A - 3 \, B\right )} \cos \left (f x + e\right )^{2} + {\left (6 \, {\left (4 \, A - 3 \, B\right )} \cos \left (f x + e\right )^{2} - 20 \, A + 15 \, B\right )} \sin \left (f x + e\right ) + 15 \, A - 20 \, B}{35 \, {\left (3 \, a c^{4} f \cos \left (f x + e\right )^{3} - 4 \, a c^{4} f \cos \left (f x + e\right ) - {\left (a c^{4} f \cos \left (f x + e\right )^{3} - 4 \, a c^{4} f \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )}} \] Input:

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))/(c-c*sin(f*x+e))^4,x, algorith 
m="fricas")
 

Output:

1/35*(2*(4*A - 3*B)*cos(f*x + e)^4 - 9*(4*A - 3*B)*cos(f*x + e)^2 + (6*(4* 
A - 3*B)*cos(f*x + e)^2 - 20*A + 15*B)*sin(f*x + e) + 15*A - 20*B)/(3*a*c^ 
4*f*cos(f*x + e)^3 - 4*a*c^4*f*cos(f*x + e) - (a*c^4*f*cos(f*x + e)^3 - 4* 
a*c^4*f*cos(f*x + e))*sin(f*x + e))
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2468 vs. \(2 (122) = 244\).

Time = 10.03 (sec) , antiderivative size = 2468, normalized size of antiderivative = 17.38 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) (c-c \sin (e+f x))^4} \, dx=\text {Too large to display} \] Input:

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))/(c-c*sin(f*x+e))**4,x)
 

Output:

Piecewise((-70*A*tan(e/2 + f*x/2)**7/(35*a*c**4*f*tan(e/2 + f*x/2)**8 - 21 
0*a*c**4*f*tan(e/2 + f*x/2)**7 + 490*a*c**4*f*tan(e/2 + f*x/2)**6 - 490*a* 
c**4*f*tan(e/2 + f*x/2)**5 + 490*a*c**4*f*tan(e/2 + f*x/2)**3 - 490*a*c**4 
*f*tan(e/2 + f*x/2)**2 + 210*a*c**4*f*tan(e/2 + f*x/2) - 35*a*c**4*f) + 21 
0*A*tan(e/2 + f*x/2)**6/(35*a*c**4*f*tan(e/2 + f*x/2)**8 - 210*a*c**4*f*ta 
n(e/2 + f*x/2)**7 + 490*a*c**4*f*tan(e/2 + f*x/2)**6 - 490*a*c**4*f*tan(e/ 
2 + f*x/2)**5 + 490*a*c**4*f*tan(e/2 + f*x/2)**3 - 490*a*c**4*f*tan(e/2 + 
f*x/2)**2 + 210*a*c**4*f*tan(e/2 + f*x/2) - 35*a*c**4*f) - 350*A*tan(e/2 + 
 f*x/2)**5/(35*a*c**4*f*tan(e/2 + f*x/2)**8 - 210*a*c**4*f*tan(e/2 + f*x/2 
)**7 + 490*a*c**4*f*tan(e/2 + f*x/2)**6 - 490*a*c**4*f*tan(e/2 + f*x/2)**5 
 + 490*a*c**4*f*tan(e/2 + f*x/2)**3 - 490*a*c**4*f*tan(e/2 + f*x/2)**2 + 2 
10*a*c**4*f*tan(e/2 + f*x/2) - 35*a*c**4*f) + 210*A*tan(e/2 + f*x/2)**4/(3 
5*a*c**4*f*tan(e/2 + f*x/2)**8 - 210*a*c**4*f*tan(e/2 + f*x/2)**7 + 490*a* 
c**4*f*tan(e/2 + f*x/2)**6 - 490*a*c**4*f*tan(e/2 + f*x/2)**5 + 490*a*c**4 
*f*tan(e/2 + f*x/2)**3 - 490*a*c**4*f*tan(e/2 + f*x/2)**2 + 210*a*c**4*f*t 
an(e/2 + f*x/2) - 35*a*c**4*f) + 14*A*tan(e/2 + f*x/2)**3/(35*a*c**4*f*tan 
(e/2 + f*x/2)**8 - 210*a*c**4*f*tan(e/2 + f*x/2)**7 + 490*a*c**4*f*tan(e/2 
 + f*x/2)**6 - 490*a*c**4*f*tan(e/2 + f*x/2)**5 + 490*a*c**4*f*tan(e/2 + f 
*x/2)**3 - 490*a*c**4*f*tan(e/2 + f*x/2)**2 + 210*a*c**4*f*tan(e/2 + f*x/2 
) - 35*a*c**4*f) - 154*A*tan(e/2 + f*x/2)**2/(35*a*c**4*f*tan(e/2 + f*x...
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 619 vs. \(2 (137) = 274\).

Time = 0.06 (sec) , antiderivative size = 619, normalized size of antiderivative = 4.36 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) (c-c \sin (e+f x))^4} \, dx =\text {Too large to display} \] Input:

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))/(c-c*sin(f*x+e))^4,x, algorith 
m="maxima")
 

Output:

-2/35*(A*(43*sin(f*x + e)/(cos(f*x + e) + 1) - 77*sin(f*x + e)^2/(cos(f*x 
+ e) + 1)^2 + 7*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 105*sin(f*x + e)^4/( 
cos(f*x + e) + 1)^4 - 175*sin(f*x + e)^5/(cos(f*x + e) + 1)^5 + 105*sin(f* 
x + e)^6/(cos(f*x + e) + 1)^6 - 35*sin(f*x + e)^7/(cos(f*x + e) + 1)^7 - 1 
3)/(a*c^4 - 6*a*c^4*sin(f*x + e)/(cos(f*x + e) + 1) + 14*a*c^4*sin(f*x + e 
)^2/(cos(f*x + e) + 1)^2 - 14*a*c^4*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 
14*a*c^4*sin(f*x + e)^5/(cos(f*x + e) + 1)^5 - 14*a*c^4*sin(f*x + e)^6/(co 
s(f*x + e) + 1)^6 + 6*a*c^4*sin(f*x + e)^7/(cos(f*x + e) + 1)^7 - a*c^4*si 
n(f*x + e)^8/(cos(f*x + e) + 1)^8) - B*(6*sin(f*x + e)/(cos(f*x + e) + 1) 
+ 21*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 - 56*sin(f*x + e)^3/(cos(f*x + e) 
 + 1)^3 + 105*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 - 70*sin(f*x + e)^5/(cos 
(f*x + e) + 1)^5 + 35*sin(f*x + e)^6/(cos(f*x + e) + 1)^6 - 1)/(a*c^4 - 6* 
a*c^4*sin(f*x + e)/(cos(f*x + e) + 1) + 14*a*c^4*sin(f*x + e)^2/(cos(f*x + 
 e) + 1)^2 - 14*a*c^4*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 14*a*c^4*sin(f 
*x + e)^5/(cos(f*x + e) + 1)^5 - 14*a*c^4*sin(f*x + e)^6/(cos(f*x + e) + 1 
)^6 + 6*a*c^4*sin(f*x + e)^7/(cos(f*x + e) + 1)^7 - a*c^4*sin(f*x + e)^8/( 
cos(f*x + e) + 1)^8))/f
 

Giac [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.57 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) (c-c \sin (e+f x))^4} \, dx=-\frac {\frac {35 \, {\left (A - B\right )}}{a c^{4} {\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}} + \frac {525 \, A \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6} + 35 \, B \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6} - 1960 \, A \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{5} + 280 \, B \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{5} + 4025 \, A \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 665 \, B \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 4480 \, A \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 1120 \, B \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 3143 \, A \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 791 \, B \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 1176 \, A \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 392 \, B \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 243 \, A - 51 \, B}{a c^{4} {\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{7}}}{280 \, f} \] Input:

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))/(c-c*sin(f*x+e))^4,x, algorith 
m="giac")
 

Output:

-1/280*(35*(A - B)/(a*c^4*(tan(1/2*f*x + 1/2*e) + 1)) + (525*A*tan(1/2*f*x 
 + 1/2*e)^6 + 35*B*tan(1/2*f*x + 1/2*e)^6 - 1960*A*tan(1/2*f*x + 1/2*e)^5 
+ 280*B*tan(1/2*f*x + 1/2*e)^5 + 4025*A*tan(1/2*f*x + 1/2*e)^4 - 665*B*tan 
(1/2*f*x + 1/2*e)^4 - 4480*A*tan(1/2*f*x + 1/2*e)^3 + 1120*B*tan(1/2*f*x + 
 1/2*e)^3 + 3143*A*tan(1/2*f*x + 1/2*e)^2 - 791*B*tan(1/2*f*x + 1/2*e)^2 - 
 1176*A*tan(1/2*f*x + 1/2*e) + 392*B*tan(1/2*f*x + 1/2*e) + 243*A - 51*B)/ 
(a*c^4*(tan(1/2*f*x + 1/2*e) - 1)^7))/f
 

Mupad [B] (verification not implemented)

Time = 37.69 (sec) , antiderivative size = 239, normalized size of antiderivative = 1.68 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) (c-c \sin (e+f x))^4} \, dx=\frac {2\,\left (\frac {35\,B}{4}+\frac {91\,A\,\cos \left (e+f\,x\right )}{4}-\frac {7\,B\,\cos \left (e+f\,x\right )}{4}+14\,A\,\sin \left (e+f\,x\right )-\frac {21\,B\,\sin \left (e+f\,x\right )}{2}+14\,A\,\cos \left (2\,e+2\,f\,x\right )-\frac {39\,A\,\cos \left (3\,e+3\,f\,x\right )}{4}-A\,\cos \left (4\,e+4\,f\,x\right )-\frac {21\,B\,\cos \left (2\,e+2\,f\,x\right )}{2}+\frac {3\,B\,\cos \left (3\,e+3\,f\,x\right )}{4}+\frac {3\,B\,\cos \left (4\,e+4\,f\,x\right )}{4}-\frac {91\,A\,\sin \left (2\,e+2\,f\,x\right )}{4}-6\,A\,\sin \left (3\,e+3\,f\,x\right )+\frac {13\,A\,\sin \left (4\,e+4\,f\,x\right )}{8}+\frac {7\,B\,\sin \left (2\,e+2\,f\,x\right )}{4}+\frac {9\,B\,\sin \left (3\,e+3\,f\,x\right )}{2}-\frac {B\,\sin \left (4\,e+4\,f\,x\right )}{8}\right )}{35\,a\,c^4\,f\,\left (\frac {7\,\cos \left (e+f\,x\right )}{2}-\frac {3\,\cos \left (3\,e+3\,f\,x\right )}{2}-\frac {7\,\sin \left (2\,e+2\,f\,x\right )}{2}+\frac {\sin \left (4\,e+4\,f\,x\right )}{4}\right )} \] Input:

int((A + B*sin(e + f*x))/((a + a*sin(e + f*x))*(c - c*sin(e + f*x))^4),x)
 

Output:

(2*((35*B)/4 + (91*A*cos(e + f*x))/4 - (7*B*cos(e + f*x))/4 + 14*A*sin(e + 
 f*x) - (21*B*sin(e + f*x))/2 + 14*A*cos(2*e + 2*f*x) - (39*A*cos(3*e + 3* 
f*x))/4 - A*cos(4*e + 4*f*x) - (21*B*cos(2*e + 2*f*x))/2 + (3*B*cos(3*e + 
3*f*x))/4 + (3*B*cos(4*e + 4*f*x))/4 - (91*A*sin(2*e + 2*f*x))/4 - 6*A*sin 
(3*e + 3*f*x) + (13*A*sin(4*e + 4*f*x))/8 + (7*B*sin(2*e + 2*f*x))/4 + (9* 
B*sin(3*e + 3*f*x))/2 - (B*sin(4*e + 4*f*x))/8))/(35*a*c^4*f*((7*cos(e + f 
*x))/2 - (3*cos(3*e + 3*f*x))/2 - (7*sin(2*e + 2*f*x))/2 + sin(4*e + 4*f*x 
)/4))
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 256, normalized size of antiderivative = 1.80 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x)) (c-c \sin (e+f x))^4} \, dx=\frac {4 \cos \left (f x +e \right ) \sin \left (f x +e \right )^{3} a -3 \cos \left (f x +e \right ) \sin \left (f x +e \right )^{3} b -12 \cos \left (f x +e \right ) \sin \left (f x +e \right )^{2} a +9 \cos \left (f x +e \right ) \sin \left (f x +e \right )^{2} b +12 \cos \left (f x +e \right ) \sin \left (f x +e \right ) a -9 \cos \left (f x +e \right ) \sin \left (f x +e \right ) b -4 \cos \left (f x +e \right ) a +3 \cos \left (f x +e \right ) b +24 \sin \left (f x +e \right )^{4} a -18 \sin \left (f x +e \right )^{4} b -72 \sin \left (f x +e \right )^{3} a +54 \sin \left (f x +e \right )^{3} b +60 \sin \left (f x +e \right )^{2} a -45 \sin \left (f x +e \right )^{2} b +12 a \sin \left (f x +e \right )-9 \sin \left (f x +e \right ) b -39 a +3 b}{105 \cos \left (f x +e \right ) a \,c^{4} f \left (\sin \left (f x +e \right )^{3}-3 \sin \left (f x +e \right )^{2}+3 \sin \left (f x +e \right )-1\right )} \] Input:

int((A+B*sin(f*x+e))/(a+a*sin(f*x+e))/(c-c*sin(f*x+e))^4,x)
 

Output:

(4*cos(e + f*x)*sin(e + f*x)**3*a - 3*cos(e + f*x)*sin(e + f*x)**3*b - 12* 
cos(e + f*x)*sin(e + f*x)**2*a + 9*cos(e + f*x)*sin(e + f*x)**2*b + 12*cos 
(e + f*x)*sin(e + f*x)*a - 9*cos(e + f*x)*sin(e + f*x)*b - 4*cos(e + f*x)* 
a + 3*cos(e + f*x)*b + 24*sin(e + f*x)**4*a - 18*sin(e + f*x)**4*b - 72*si 
n(e + f*x)**3*a + 54*sin(e + f*x)**3*b + 60*sin(e + f*x)**2*a - 45*sin(e + 
 f*x)**2*b + 12*sin(e + f*x)*a - 9*sin(e + f*x)*b - 39*a + 3*b)/(105*cos(e 
 + f*x)*a*c**4*f*(sin(e + f*x)**3 - 3*sin(e + f*x)**2 + 3*sin(e + f*x) - 1 
))