\(\int (a-a \sin ^2(x))^{7/2} \, dx\) [94]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 13, antiderivative size = 72 \[ \int \left (a-a \sin ^2(x)\right )^{7/2} \, dx=\frac {16}{35} a^3 \sqrt {a \cos ^2(x)} \tan (x)+\frac {8}{35} a^2 \left (a \cos ^2(x)\right )^{3/2} \tan (x)+\frac {6}{35} a \left (a \cos ^2(x)\right )^{5/2} \tan (x)+\frac {1}{7} \left (a \cos ^2(x)\right )^{7/2} \tan (x) \] Output:

16/35*a^3*(a*cos(x)^2)^(1/2)*tan(x)+8/35*a^2*(a*cos(x)^2)^(3/2)*tan(x)+6/3 
5*a*(a*cos(x)^2)^(5/2)*tan(x)+1/7*(a*cos(x)^2)^(7/2)*tan(x)
 

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.54 \[ \int \left (a-a \sin ^2(x)\right )^{7/2} \, dx=-\frac {1}{35} a^3 \sqrt {a \cos ^2(x)} \left (-35+35 \sin ^2(x)-21 \sin ^4(x)+5 \sin ^6(x)\right ) \tan (x) \] Input:

Integrate[(a - a*Sin[x]^2)^(7/2),x]
 

Output:

-1/35*(a^3*Sqrt[a*Cos[x]^2]*(-35 + 35*Sin[x]^2 - 21*Sin[x]^4 + 5*Sin[x]^6) 
*Tan[x])
 

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.08, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.923, Rules used = {3042, 3655, 3042, 3682, 3042, 3682, 3042, 3682, 3042, 3686, 3042, 3117}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (a-a \sin ^2(x)\right )^{7/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (a-a \sin (x)^2\right )^{7/2}dx\)

\(\Big \downarrow \) 3655

\(\displaystyle \int \left (a \cos ^2(x)\right )^{7/2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (a \sin \left (x+\frac {\pi }{2}\right )^2\right )^{7/2}dx\)

\(\Big \downarrow \) 3682

\(\displaystyle \frac {6}{7} a \int \left (a \cos ^2(x)\right )^{5/2}dx+\frac {1}{7} \tan (x) \left (a \cos ^2(x)\right )^{7/2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6}{7} a \int \left (a \sin \left (x+\frac {\pi }{2}\right )^2\right )^{5/2}dx+\frac {1}{7} \tan (x) \left (a \cos ^2(x)\right )^{7/2}\)

\(\Big \downarrow \) 3682

\(\displaystyle \frac {6}{7} a \left (\frac {4}{5} a \int \left (a \cos ^2(x)\right )^{3/2}dx+\frac {1}{5} \tan (x) \left (a \cos ^2(x)\right )^{5/2}\right )+\frac {1}{7} \tan (x) \left (a \cos ^2(x)\right )^{7/2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6}{7} a \left (\frac {4}{5} a \int \left (a \sin \left (x+\frac {\pi }{2}\right )^2\right )^{3/2}dx+\frac {1}{5} \tan (x) \left (a \cos ^2(x)\right )^{5/2}\right )+\frac {1}{7} \tan (x) \left (a \cos ^2(x)\right )^{7/2}\)

\(\Big \downarrow \) 3682

\(\displaystyle \frac {6}{7} a \left (\frac {4}{5} a \left (\frac {2}{3} a \int \sqrt {a \cos ^2(x)}dx+\frac {1}{3} \tan (x) \left (a \cos ^2(x)\right )^{3/2}\right )+\frac {1}{5} \tan (x) \left (a \cos ^2(x)\right )^{5/2}\right )+\frac {1}{7} \tan (x) \left (a \cos ^2(x)\right )^{7/2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6}{7} a \left (\frac {4}{5} a \left (\frac {2}{3} a \int \sqrt {a \sin \left (x+\frac {\pi }{2}\right )^2}dx+\frac {1}{3} \tan (x) \left (a \cos ^2(x)\right )^{3/2}\right )+\frac {1}{5} \tan (x) \left (a \cos ^2(x)\right )^{5/2}\right )+\frac {1}{7} \tan (x) \left (a \cos ^2(x)\right )^{7/2}\)

\(\Big \downarrow \) 3686

\(\displaystyle \frac {6}{7} a \left (\frac {4}{5} a \left (\frac {2}{3} a \sec (x) \sqrt {a \cos ^2(x)} \int \cos (x)dx+\frac {1}{3} \tan (x) \left (a \cos ^2(x)\right )^{3/2}\right )+\frac {1}{5} \tan (x) \left (a \cos ^2(x)\right )^{5/2}\right )+\frac {1}{7} \tan (x) \left (a \cos ^2(x)\right )^{7/2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {6}{7} a \left (\frac {4}{5} a \left (\frac {2}{3} a \sec (x) \sqrt {a \cos ^2(x)} \int \sin \left (x+\frac {\pi }{2}\right )dx+\frac {1}{3} \tan (x) \left (a \cos ^2(x)\right )^{3/2}\right )+\frac {1}{5} \tan (x) \left (a \cos ^2(x)\right )^{5/2}\right )+\frac {1}{7} \tan (x) \left (a \cos ^2(x)\right )^{7/2}\)

\(\Big \downarrow \) 3117

\(\displaystyle \frac {1}{7} \tan (x) \left (a \cos ^2(x)\right )^{7/2}+\frac {6}{7} a \left (\frac {1}{5} \tan (x) \left (a \cos ^2(x)\right )^{5/2}+\frac {4}{5} a \left (\frac {1}{3} \tan (x) \left (a \cos ^2(x)\right )^{3/2}+\frac {2}{3} a \tan (x) \sqrt {a \cos ^2(x)}\right )\right )\)

Input:

Int[(a - a*Sin[x]^2)^(7/2),x]
 

Output:

((a*Cos[x]^2)^(7/2)*Tan[x])/7 + (6*a*(((a*Cos[x]^2)^(5/2)*Tan[x])/5 + (4*a 
*((2*a*Sqrt[a*Cos[x]^2]*Tan[x])/3 + ((a*Cos[x]^2)^(3/2)*Tan[x])/3))/5))/7
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3117
Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; 
 FreeQ[{c, d}, x]
 

rule 3655
Int[(u_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Int[A 
ctivateTrig[u*(a*cos[e + f*x]^2)^p], x] /; FreeQ[{a, b, e, f, p}, x] && EqQ 
[a + b, 0]
 

rule 3682
Int[((b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Simp[(-Cot[e + f*x 
])*((b*Sin[e + f*x]^2)^p/(2*f*p)), x] + Simp[b*((2*p - 1)/(2*p))   Int[(b*S 
in[e + f*x]^2)^(p - 1), x], x] /; FreeQ[{b, e, f}, x] &&  !IntegerQ[p] && G 
tQ[p, 1]
 

rule 3686
Int[(u_.)*((b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff 
= FreeFactors[Sin[e + f*x], x]}, Simp[(b*ff^n)^IntPart[p]*((b*Sin[e + f*x]^ 
n)^FracPart[p]/(Sin[e + f*x]/ff)^(n*FracPart[p]))   Int[ActivateTrig[u]*(Si 
n[e + f*x]/ff)^(n*p), x], x]] /; FreeQ[{b, e, f, n, p}, x] &&  !IntegerQ[p] 
 && IntegerQ[n] && (EqQ[u, 1] || MatchQ[u, ((d_.)*(trig_)[e + f*x])^(m_.) / 
; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig]])
 
Maple [A] (verified)

Time = 0.70 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.53

method result size
default \(-\frac {\cos \left (x \right ) a^{4} \sin \left (x \right ) \left (-5 \cos \left (x \right )^{6}-6 \cos \left (x \right )^{4}-8 \cos \left (x \right )^{2}-16\right )}{35 \sqrt {a \cos \left (x \right )^{2}}}\) \(38\)
risch \(-\frac {i a^{3} {\mathrm e}^{8 i x} \sqrt {a \left ({\mathrm e}^{2 i x}+1\right )^{2} {\mathrm e}^{-2 i x}}}{896 \left ({\mathrm e}^{2 i x}+1\right )}-\frac {35 i a^{3} {\mathrm e}^{2 i x} \sqrt {a \left ({\mathrm e}^{2 i x}+1\right )^{2} {\mathrm e}^{-2 i x}}}{128 \left ({\mathrm e}^{2 i x}+1\right )}+\frac {35 i a^{3} \sqrt {a \left ({\mathrm e}^{2 i x}+1\right )^{2} {\mathrm e}^{-2 i x}}}{128 \left ({\mathrm e}^{2 i x}+1\right )}+\frac {7 i a^{3} {\mathrm e}^{-2 i x} \sqrt {a \left ({\mathrm e}^{2 i x}+1\right )^{2} {\mathrm e}^{-2 i x}}}{128 \left ({\mathrm e}^{2 i x}+1\right )}-\frac {11 i a^{3} \sqrt {a \left ({\mathrm e}^{2 i x}+1\right )^{2} {\mathrm e}^{-2 i x}}\, \cos \left (6 x \right )}{1120 \left ({\mathrm e}^{2 i x}+1\right )}+\frac {27 a^{3} \sqrt {a \left ({\mathrm e}^{2 i x}+1\right )^{2} {\mathrm e}^{-2 i x}}\, \sin \left (6 x \right )}{2240 \left ({\mathrm e}^{2 i x}+1\right )}-\frac {7 i a^{3} \sqrt {a \left ({\mathrm e}^{2 i x}+1\right )^{2} {\mathrm e}^{-2 i x}}\, \cos \left (4 x \right )}{160 \left ({\mathrm e}^{2 i x}+1\right )}+\frac {21 a^{3} \sqrt {a \left ({\mathrm e}^{2 i x}+1\right )^{2} {\mathrm e}^{-2 i x}}\, \sin \left (4 x \right )}{320 \left ({\mathrm e}^{2 i x}+1\right )}\) \(295\)

Input:

int((a-a*sin(x)^2)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

-1/35*cos(x)*a^4*sin(x)*(-5*cos(x)^6-6*cos(x)^4-8*cos(x)^2-16)/(a*cos(x)^2 
)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.68 \[ \int \left (a-a \sin ^2(x)\right )^{7/2} \, dx=\frac {{\left (5 \, a^{3} \cos \left (x\right )^{6} + 6 \, a^{3} \cos \left (x\right )^{4} + 8 \, a^{3} \cos \left (x\right )^{2} + 16 \, a^{3}\right )} \sqrt {a \cos \left (x\right )^{2}} \sin \left (x\right )}{35 \, \cos \left (x\right )} \] Input:

integrate((a-a*sin(x)^2)^(7/2),x, algorithm="fricas")
 

Output:

1/35*(5*a^3*cos(x)^6 + 6*a^3*cos(x)^4 + 8*a^3*cos(x)^2 + 16*a^3)*sqrt(a*co 
s(x)^2)*sin(x)/cos(x)
 

Sympy [F(-1)]

Timed out. \[ \int \left (a-a \sin ^2(x)\right )^{7/2} \, dx=\text {Timed out} \] Input:

integrate((a-a*sin(x)**2)**(7/2),x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.56 \[ \int \left (a-a \sin ^2(x)\right )^{7/2} \, dx=\frac {1}{2240} \, {\left (5 \, a^{3} \sin \left (7 \, x\right ) + 49 \, a^{3} \sin \left (5 \, x\right ) + 245 \, a^{3} \sin \left (3 \, x\right ) + 1225 \, a^{3} \sin \left (x\right )\right )} \sqrt {a} \] Input:

integrate((a-a*sin(x)^2)^(7/2),x, algorithm="maxima")
 

Output:

1/2240*(5*a^3*sin(7*x) + 49*a^3*sin(5*x) + 245*a^3*sin(3*x) + 1225*a^3*sin 
(x))*sqrt(a)
 

Giac [A] (verification not implemented)

Time = 0.52 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.54 \[ \int \left (a-a \sin ^2(x)\right )^{7/2} \, dx=-\frac {2 \, {\left (35 \, a^{\frac {7}{2}} {\left (\frac {1}{\tan \left (\frac {1}{2} \, x\right )} + \tan \left (\frac {1}{2} \, x\right )\right )}^{6} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, x\right )^{4} - 1\right ) - 140 \, a^{\frac {7}{2}} {\left (\frac {1}{\tan \left (\frac {1}{2} \, x\right )} + \tan \left (\frac {1}{2} \, x\right )\right )}^{4} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, x\right )^{4} - 1\right ) + 336 \, a^{\frac {7}{2}} {\left (\frac {1}{\tan \left (\frac {1}{2} \, x\right )} + \tan \left (\frac {1}{2} \, x\right )\right )}^{2} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, x\right )^{4} - 1\right ) - 320 \, a^{\frac {7}{2}} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, x\right )^{4} - 1\right )\right )}}{35 \, {\left (\frac {1}{\tan \left (\frac {1}{2} \, x\right )} + \tan \left (\frac {1}{2} \, x\right )\right )}^{7}} \] Input:

integrate((a-a*sin(x)^2)^(7/2),x, algorithm="giac")
 

Output:

-2/35*(35*a^(7/2)*(1/tan(1/2*x) + tan(1/2*x))^6*sgn(tan(1/2*x)^4 - 1) - 14 
0*a^(7/2)*(1/tan(1/2*x) + tan(1/2*x))^4*sgn(tan(1/2*x)^4 - 1) + 336*a^(7/2 
)*(1/tan(1/2*x) + tan(1/2*x))^2*sgn(tan(1/2*x)^4 - 1) - 320*a^(7/2)*sgn(ta 
n(1/2*x)^4 - 1))/(1/tan(1/2*x) + tan(1/2*x))^7
 

Mupad [F(-1)]

Timed out. \[ \int \left (a-a \sin ^2(x)\right )^{7/2} \, dx=\int {\left (a-a\,{\sin \left (x\right )}^2\right )}^{7/2} \,d x \] Input:

int((a - a*sin(x)^2)^(7/2),x)
 

Output:

int((a - a*sin(x)^2)^(7/2), x)
 

Reduce [F]

\[ \int \left (a-a \sin ^2(x)\right )^{7/2} \, dx=\sqrt {a}\, a^{3} \left (\int \sqrt {-\sin \left (x \right )^{2}+1}d x -\left (\int \sqrt {-\sin \left (x \right )^{2}+1}\, \sin \left (x \right )^{6}d x \right )+3 \left (\int \sqrt {-\sin \left (x \right )^{2}+1}\, \sin \left (x \right )^{4}d x \right )-3 \left (\int \sqrt {-\sin \left (x \right )^{2}+1}\, \sin \left (x \right )^{2}d x \right )\right ) \] Input:

int((a-a*sin(x)^2)^(7/2),x)
 

Output:

sqrt(a)*a**3*(int(sqrt( - sin(x)**2 + 1),x) - int(sqrt( - sin(x)**2 + 1)*s 
in(x)**6,x) + 3*int(sqrt( - sin(x)**2 + 1)*sin(x)**4,x) - 3*int(sqrt( - si 
n(x)**2 + 1)*sin(x)**2,x))