\(\int (a+b \sin ^2(x))^{5/2} \, dx\) [140]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 12, antiderivative size = 152 \[ \int \left (a+b \sin ^2(x)\right )^{5/2} \, dx=-\frac {4}{15} b (2 a+b) \cos (x) \sin (x) \sqrt {a+b \sin ^2(x)}-\frac {1}{5} b \cos (x) \sin (x) \left (a+b \sin ^2(x)\right )^{3/2}+\frac {\left (23 a^2+23 a b+8 b^2\right ) E\left (x\left |-\frac {b}{a}\right .\right ) \sqrt {a+b \sin ^2(x)}}{15 \sqrt {\frac {a+b \sin ^2(x)}{a}}}-\frac {4 a (a+b) (2 a+b) \operatorname {EllipticF}\left (x,-\frac {b}{a}\right ) \sqrt {\frac {a+b \sin ^2(x)}{a}}}{15 \sqrt {a+b \sin ^2(x)}} \] Output:

-4/15*b*(2*a+b)*cos(x)*sin(x)*(a+b*sin(x)^2)^(1/2)-1/5*b*cos(x)*sin(x)*(a+ 
b*sin(x)^2)^(3/2)+1/15*(23*a^2+23*a*b+8*b^2)*EllipticE(sin(x),(-b/a)^(1/2) 
)*(a+b*sin(x)^2)^(1/2)/((a+b*sin(x)^2)/a)^(1/2)-4/15*a*(a+b)*(2*a+b)*Inver 
seJacobiAM(x,(-b/a)^(1/2))*((a+b*sin(x)^2)/a)^(1/2)/(a+b*sin(x)^2)^(1/2)
 

Mathematica [A] (verified)

Time = 0.67 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.05 \[ \int \left (a+b \sin ^2(x)\right )^{5/2} \, dx=\frac {16 a \left (23 a^2+23 a b+8 b^2\right ) \sqrt {\frac {2 a+b-b \cos (2 x)}{a}} E\left (x\left |-\frac {b}{a}\right .\right )-64 a \left (2 a^2+3 a b+b^2\right ) \sqrt {\frac {2 a+b-b \cos (2 x)}{a}} \operatorname {EllipticF}\left (x,-\frac {b}{a}\right )-\sqrt {2} b \left (88 a^2+88 a b+25 b^2-28 b (2 a+b) \cos (2 x)+3 b^2 \cos (4 x)\right ) \sin (2 x)}{240 \sqrt {2 a+b-b \cos (2 x)}} \] Input:

Integrate[(a + b*Sin[x]^2)^(5/2),x]
 

Output:

(16*a*(23*a^2 + 23*a*b + 8*b^2)*Sqrt[(2*a + b - b*Cos[2*x])/a]*EllipticE[x 
, -(b/a)] - 64*a*(2*a^2 + 3*a*b + b^2)*Sqrt[(2*a + b - b*Cos[2*x])/a]*Elli 
pticF[x, -(b/a)] - Sqrt[2]*b*(88*a^2 + 88*a*b + 25*b^2 - 28*b*(2*a + b)*Co 
s[2*x] + 3*b^2*Cos[4*x])*Sin[2*x])/(240*Sqrt[2*a + b - b*Cos[2*x]])
 

Rubi [A] (verified)

Time = 0.96 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.02, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.083, Rules used = {3042, 3659, 3042, 3649, 3042, 3651, 3042, 3657, 3042, 3656, 3662, 3042, 3661}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (a+b \sin ^2(x)\right )^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (a+b \sin (x)^2\right )^{5/2}dx\)

\(\Big \downarrow \) 3659

\(\displaystyle \frac {1}{5} \int \sqrt {b \sin ^2(x)+a} \left (4 b (2 a+b) \sin ^2(x)+a (5 a+b)\right )dx-\frac {1}{5} b \sin (x) \cos (x) \left (a+b \sin ^2(x)\right )^{3/2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \sqrt {b \sin (x)^2+a} \left (4 b (2 a+b) \sin (x)^2+a (5 a+b)\right )dx-\frac {1}{5} b \sin (x) \cos (x) \left (a+b \sin ^2(x)\right )^{3/2}\)

\(\Big \downarrow \) 3649

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \int \frac {b \left (23 a^2+23 b a+8 b^2\right ) \sin ^2(x)+a \left (15 a^2+11 b a+4 b^2\right )}{\sqrt {b \sin ^2(x)+a}}dx-\frac {4}{3} b (2 a+b) \sin (x) \cos (x) \sqrt {a+b \sin ^2(x)}\right )-\frac {1}{5} b \sin (x) \cos (x) \left (a+b \sin ^2(x)\right )^{3/2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \int \frac {b \left (23 a^2+23 b a+8 b^2\right ) \sin (x)^2+a \left (15 a^2+11 b a+4 b^2\right )}{\sqrt {b \sin (x)^2+a}}dx-\frac {4}{3} b (2 a+b) \sin (x) \cos (x) \sqrt {a+b \sin ^2(x)}\right )-\frac {1}{5} b \sin (x) \cos (x) \left (a+b \sin ^2(x)\right )^{3/2}\)

\(\Big \downarrow \) 3651

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\left (23 a^2+23 a b+8 b^2\right ) \int \sqrt {b \sin ^2(x)+a}dx-4 a (a+b) (2 a+b) \int \frac {1}{\sqrt {b \sin ^2(x)+a}}dx\right )-\frac {4}{3} b (2 a+b) \sin (x) \cos (x) \sqrt {a+b \sin ^2(x)}\right )-\frac {1}{5} b \sin (x) \cos (x) \left (a+b \sin ^2(x)\right )^{3/2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\left (23 a^2+23 a b+8 b^2\right ) \int \sqrt {b \sin (x)^2+a}dx-4 a (a+b) (2 a+b) \int \frac {1}{\sqrt {b \sin (x)^2+a}}dx\right )-\frac {4}{3} b (2 a+b) \sin (x) \cos (x) \sqrt {a+b \sin ^2(x)}\right )-\frac {1}{5} b \sin (x) \cos (x) \left (a+b \sin ^2(x)\right )^{3/2}\)

\(\Big \downarrow \) 3657

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {\left (23 a^2+23 a b+8 b^2\right ) \sqrt {a+b \sin ^2(x)} \int \sqrt {\frac {b \sin ^2(x)}{a}+1}dx}{\sqrt {\frac {b \sin ^2(x)}{a}+1}}-4 a (a+b) (2 a+b) \int \frac {1}{\sqrt {b \sin (x)^2+a}}dx\right )-\frac {4}{3} b (2 a+b) \sin (x) \cos (x) \sqrt {a+b \sin ^2(x)}\right )-\frac {1}{5} b \sin (x) \cos (x) \left (a+b \sin ^2(x)\right )^{3/2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {\left (23 a^2+23 a b+8 b^2\right ) \sqrt {a+b \sin ^2(x)} \int \sqrt {\frac {b \sin (x)^2}{a}+1}dx}{\sqrt {\frac {b \sin ^2(x)}{a}+1}}-4 a (a+b) (2 a+b) \int \frac {1}{\sqrt {b \sin (x)^2+a}}dx\right )-\frac {4}{3} b (2 a+b) \sin (x) \cos (x) \sqrt {a+b \sin ^2(x)}\right )-\frac {1}{5} b \sin (x) \cos (x) \left (a+b \sin ^2(x)\right )^{3/2}\)

\(\Big \downarrow \) 3656

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {\left (23 a^2+23 a b+8 b^2\right ) \sqrt {a+b \sin ^2(x)} E\left (x\left |-\frac {b}{a}\right .\right )}{\sqrt {\frac {b \sin ^2(x)}{a}+1}}-4 a (a+b) (2 a+b) \int \frac {1}{\sqrt {b \sin (x)^2+a}}dx\right )-\frac {4}{3} b (2 a+b) \sin (x) \cos (x) \sqrt {a+b \sin ^2(x)}\right )-\frac {1}{5} b \sin (x) \cos (x) \left (a+b \sin ^2(x)\right )^{3/2}\)

\(\Big \downarrow \) 3662

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {\left (23 a^2+23 a b+8 b^2\right ) \sqrt {a+b \sin ^2(x)} E\left (x\left |-\frac {b}{a}\right .\right )}{\sqrt {\frac {b \sin ^2(x)}{a}+1}}-\frac {4 a (a+b) (2 a+b) \sqrt {\frac {b \sin ^2(x)}{a}+1} \int \frac {1}{\sqrt {\frac {b \sin ^2(x)}{a}+1}}dx}{\sqrt {a+b \sin ^2(x)}}\right )-\frac {4}{3} b (2 a+b) \sin (x) \cos (x) \sqrt {a+b \sin ^2(x)}\right )-\frac {1}{5} b \sin (x) \cos (x) \left (a+b \sin ^2(x)\right )^{3/2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {\left (23 a^2+23 a b+8 b^2\right ) \sqrt {a+b \sin ^2(x)} E\left (x\left |-\frac {b}{a}\right .\right )}{\sqrt {\frac {b \sin ^2(x)}{a}+1}}-\frac {4 a (a+b) (2 a+b) \sqrt {\frac {b \sin ^2(x)}{a}+1} \int \frac {1}{\sqrt {\frac {b \sin (x)^2}{a}+1}}dx}{\sqrt {a+b \sin ^2(x)}}\right )-\frac {4}{3} b (2 a+b) \sin (x) \cos (x) \sqrt {a+b \sin ^2(x)}\right )-\frac {1}{5} b \sin (x) \cos (x) \left (a+b \sin ^2(x)\right )^{3/2}\)

\(\Big \downarrow \) 3661

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {\left (23 a^2+23 a b+8 b^2\right ) \sqrt {a+b \sin ^2(x)} E\left (x\left |-\frac {b}{a}\right .\right )}{\sqrt {\frac {b \sin ^2(x)}{a}+1}}-\frac {4 a (a+b) (2 a+b) \sqrt {\frac {b \sin ^2(x)}{a}+1} \operatorname {EllipticF}\left (x,-\frac {b}{a}\right )}{\sqrt {a+b \sin ^2(x)}}\right )-\frac {4}{3} b (2 a+b) \sin (x) \cos (x) \sqrt {a+b \sin ^2(x)}\right )-\frac {1}{5} b \sin (x) \cos (x) \left (a+b \sin ^2(x)\right )^{3/2}\)

Input:

Int[(a + b*Sin[x]^2)^(5/2),x]
 

Output:

-1/5*(b*Cos[x]*Sin[x]*(a + b*Sin[x]^2)^(3/2)) + ((-4*b*(2*a + b)*Cos[x]*Si 
n[x]*Sqrt[a + b*Sin[x]^2])/3 + (((23*a^2 + 23*a*b + 8*b^2)*EllipticE[x, -( 
b/a)]*Sqrt[a + b*Sin[x]^2])/Sqrt[1 + (b*Sin[x]^2)/a] - (4*a*(a + b)*(2*a + 
 b)*EllipticF[x, -(b/a)]*Sqrt[1 + (b*Sin[x]^2)/a])/Sqrt[a + b*Sin[x]^2])/3 
)/5
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3649
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]^2), x_Symbol] :> Simp[(-B)*Cos[e + f*x]*Sin[e + f*x]*((a + b* 
Sin[e + f*x]^2)^p/(2*f*(p + 1))), x] + Simp[1/(2*(p + 1))   Int[(a + b*Sin[ 
e + f*x]^2)^(p - 1)*Simp[a*B + 2*a*A*(p + 1) + (2*A*b*(p + 1) + B*(b + 2*a* 
p + 2*b*p))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && G 
tQ[p, 0]
 

rule 3651
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]^2)/Sqrt[(a_) + (b_.)*sin[(e_.) + 
 (f_.)*(x_)]^2], x_Symbol] :> Simp[B/b   Int[Sqrt[a + b*Sin[e + f*x]^2], x] 
, x] + Simp[(A*b - a*B)/b   Int[1/Sqrt[a + b*Sin[e + f*x]^2], x], x] /; Fre 
eQ[{a, b, e, f, A, B}, x]
 

rule 3656
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[(Sqrt[a 
]/f)*EllipticE[e + f*x, -b/a], x] /; FreeQ[{a, b, e, f}, x] && GtQ[a, 0]
 

rule 3657
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[Sqrt[a 
+ b*Sin[e + f*x]^2]/Sqrt[1 + b*(Sin[e + f*x]^2/a)]   Int[Sqrt[1 + (b*Sin[e 
+ f*x]^2)/a], x], x] /; FreeQ[{a, b, e, f}, x] &&  !GtQ[a, 0]
 

rule 3659
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Simp[(-b)*C 
os[e + f*x]*Sin[e + f*x]*((a + b*Sin[e + f*x]^2)^(p - 1)/(2*f*p)), x] + Sim 
p[1/(2*p)   Int[(a + b*Sin[e + f*x]^2)^(p - 2)*Simp[a*(b + 2*a*p) + b*(2*a 
+ b)*(2*p - 1)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[ 
a + b, 0] && GtQ[p, 1]
 

rule 3661
Int[1/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[(1/(S 
qrt[a]*f))*EllipticF[e + f*x, -b/a], x] /; FreeQ[{a, b, e, f}, x] && GtQ[a, 
 0]
 

rule 3662
Int[1/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[Sqrt[ 
1 + b*(Sin[e + f*x]^2/a)]/Sqrt[a + b*Sin[e + f*x]^2]   Int[1/Sqrt[1 + (b*Si 
n[e + f*x]^2)/a], x], x] /; FreeQ[{a, b, e, f}, x] &&  !GtQ[a, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(329\) vs. \(2(137)=274\).

Time = 4.93 (sec) , antiderivative size = 330, normalized size of antiderivative = 2.17

method result size
default \(\frac {-\frac {b^{3} \cos \left (x \right )^{6} \sin \left (x \right )}{5}+\frac {\left (14 b^{2} a +10 b^{3}\right ) \cos \left (x \right )^{4} \sin \left (x \right )}{15}+\frac {\left (-11 a^{2} b -18 b^{2} a -7 b^{3}\right ) \cos \left (x \right )^{2} \sin \left (x \right )}{15}-\frac {8 a^{3} \sqrt {\frac {\cos \left (2 x \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \cos \left (x \right )^{2}}{a}+\frac {a +b}{a}}\, \operatorname {EllipticF}\left (\sin \left (x \right ), \sqrt {-\frac {b}{a}}\right )}{15}-\frac {4 a^{2} \sqrt {\frac {\cos \left (2 x \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \cos \left (x \right )^{2}}{a}+\frac {a +b}{a}}\, \operatorname {EllipticF}\left (\sin \left (x \right ), \sqrt {-\frac {b}{a}}\right ) b}{5}-\frac {4 a \sqrt {\frac {\cos \left (2 x \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \cos \left (x \right )^{2}}{a}+\frac {a +b}{a}}\, \operatorname {EllipticF}\left (\sin \left (x \right ), \sqrt {-\frac {b}{a}}\right ) b^{2}}{15}+\frac {23 \sqrt {\frac {\cos \left (2 x \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \cos \left (x \right )^{2}}{a}+\frac {a +b}{a}}\, \operatorname {EllipticE}\left (\sin \left (x \right ), \sqrt {-\frac {b}{a}}\right ) a^{3}}{15}+\frac {23 \sqrt {\frac {\cos \left (2 x \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \cos \left (x \right )^{2}}{a}+\frac {a +b}{a}}\, \operatorname {EllipticE}\left (\sin \left (x \right ), \sqrt {-\frac {b}{a}}\right ) a^{2} b}{15}+\frac {8 \sqrt {\frac {\cos \left (2 x \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \cos \left (x \right )^{2}}{a}+\frac {a +b}{a}}\, \operatorname {EllipticE}\left (\sin \left (x \right ), \sqrt {-\frac {b}{a}}\right ) a \,b^{2}}{15}}{\cos \left (x \right ) \sqrt {a +b \sin \left (x \right )^{2}}}\) \(330\)

Input:

int((a+b*sin(x)^2)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

(-1/5*b^3*cos(x)^6*sin(x)+1/15*(14*a*b^2+10*b^3)*cos(x)^4*sin(x)+1/15*(-11 
*a^2*b-18*a*b^2-7*b^3)*cos(x)^2*sin(x)-8/15*a^3*(cos(x)^2)^(1/2)*(-b/a*cos 
(x)^2+(a+b)/a)^(1/2)*EllipticF(sin(x),(-b/a)^(1/2))-4/5*a^2*(cos(x)^2)^(1/ 
2)*(-b/a*cos(x)^2+(a+b)/a)^(1/2)*EllipticF(sin(x),(-b/a)^(1/2))*b-4/15*a*( 
cos(x)^2)^(1/2)*(-b/a*cos(x)^2+(a+b)/a)^(1/2)*EllipticF(sin(x),(-b/a)^(1/2 
))*b^2+23/15*(cos(x)^2)^(1/2)*(-b/a*cos(x)^2+(a+b)/a)^(1/2)*EllipticE(sin( 
x),(-b/a)^(1/2))*a^3+23/15*(cos(x)^2)^(1/2)*(-b/a*cos(x)^2+(a+b)/a)^(1/2)* 
EllipticE(sin(x),(-b/a)^(1/2))*a^2*b+8/15*(cos(x)^2)^(1/2)*(-b/a*cos(x)^2+ 
(a+b)/a)^(1/2)*EllipticE(sin(x),(-b/a)^(1/2))*a*b^2)/cos(x)/(a+b*sin(x)^2) 
^(1/2)
 

Fricas [F]

\[ \int \left (a+b \sin ^2(x)\right )^{5/2} \, dx=\int { {\left (b \sin \left (x\right )^{2} + a\right )}^{\frac {5}{2}} \,d x } \] Input:

integrate((a+b*sin(x)^2)^(5/2),x, algorithm="fricas")
 

Output:

integral((b^2*cos(x)^4 - 2*(a*b + b^2)*cos(x)^2 + a^2 + 2*a*b + b^2)*sqrt( 
-b*cos(x)^2 + a + b), x)
 

Sympy [F(-1)]

Timed out. \[ \int \left (a+b \sin ^2(x)\right )^{5/2} \, dx=\text {Timed out} \] Input:

integrate((a+b*sin(x)**2)**(5/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \left (a+b \sin ^2(x)\right )^{5/2} \, dx=\int { {\left (b \sin \left (x\right )^{2} + a\right )}^{\frac {5}{2}} \,d x } \] Input:

integrate((a+b*sin(x)^2)^(5/2),x, algorithm="maxima")
 

Output:

integrate((b*sin(x)^2 + a)^(5/2), x)
 

Giac [F]

\[ \int \left (a+b \sin ^2(x)\right )^{5/2} \, dx=\int { {\left (b \sin \left (x\right )^{2} + a\right )}^{\frac {5}{2}} \,d x } \] Input:

integrate((a+b*sin(x)^2)^(5/2),x, algorithm="giac")
 

Output:

integrate((b*sin(x)^2 + a)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \left (a+b \sin ^2(x)\right )^{5/2} \, dx=\int {\left (b\,{\sin \left (x\right )}^2+a\right )}^{5/2} \,d x \] Input:

int((a + b*sin(x)^2)^(5/2),x)
                                                                                    
                                                                                    
 

Output:

int((a + b*sin(x)^2)^(5/2), x)
 

Reduce [F]

\[ \int \left (a+b \sin ^2(x)\right )^{5/2} \, dx=\left (\int \sqrt {\sin \left (x \right )^{2} b +a}d x \right ) a^{2}+\left (\int \sqrt {\sin \left (x \right )^{2} b +a}\, \sin \left (x \right )^{4}d x \right ) b^{2}+2 \left (\int \sqrt {\sin \left (x \right )^{2} b +a}\, \sin \left (x \right )^{2}d x \right ) a b \] Input:

int((a+b*sin(x)^2)^(5/2),x)
 

Output:

int(sqrt(sin(x)**2*b + a),x)*a**2 + int(sqrt(sin(x)**2*b + a)*sin(x)**4,x) 
*b**2 + 2*int(sqrt(sin(x)**2*b + a)*sin(x)**2,x)*a*b