\(\int \frac {1}{a-a \sin ^{10}(x)} \, dx\) [58]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 11, antiderivative size = 421 \[ \int \frac {1}{a-a \sin ^{10}(x)} \, dx=\frac {\arctan \left (\frac {\sqrt [5]{-1}+\tan \left (\frac {x}{2}\right )}{\sqrt {1-(-1)^{2/5}}}\right )}{5 \sqrt {1-(-1)^{2/5}} a}+\frac {\arctan \left (\frac {(-1)^{2/5}+\tan \left (\frac {x}{2}\right )}{\sqrt {1-(-1)^{4/5}}}\right )}{5 \sqrt {1-(-1)^{4/5}} a}+\frac {\arctan \left (\frac {(-1)^{3/5}+\tan \left (\frac {x}{2}\right )}{\sqrt {1+\sqrt [5]{-1}}}\right )}{5 \sqrt {1+\sqrt [5]{-1}} a}+\frac {\arctan \left (\frac {(-1)^{4/5}+\tan \left (\frac {x}{2}\right )}{\sqrt {1+(-1)^{3/5}}}\right )}{5 \sqrt {1+(-1)^{3/5}} a}-\frac {\arctan \left (\frac {(-1)^{4/5} \left (1+\sqrt [5]{-1} \tan \left (\frac {x}{2}\right )\right )}{\sqrt {1+(-1)^{3/5}}}\right )}{5 \sqrt {1+(-1)^{3/5}} a}-\frac {\arctan \left (\frac {(-1)^{3/5} \left (1+(-1)^{2/5} \tan \left (\frac {x}{2}\right )\right )}{\sqrt {1+\sqrt [5]{-1}}}\right )}{5 \sqrt {1+\sqrt [5]{-1}} a}-\frac {\arctan \left (\frac {(-1)^{2/5} \left (1+(-1)^{3/5} \tan \left (\frac {x}{2}\right )\right )}{\sqrt {1-(-1)^{4/5}}}\right )}{5 \sqrt {1-(-1)^{4/5}} a}-\frac {\arctan \left (\frac {\sqrt [5]{-1} \left (1+(-1)^{4/5} \tan \left (\frac {x}{2}\right )\right )}{\sqrt {1-(-1)^{2/5}}}\right )}{5 \sqrt {1-(-1)^{2/5}} a}+\frac {\cos (x)}{10 a (1-\sin (x))}-\frac {\cos (x)}{10 a (1+\sin (x))} \] Output:

1/5*arctan(((-1)^(1/5)+tan(1/2*x))/(1-(-1)^(2/5))^(1/2))/(1-(-1)^(2/5))^(1 
/2)/a+1/5*arctan(((-1)^(2/5)+tan(1/2*x))/(1-(-1)^(4/5))^(1/2))/(1-(-1)^(4/ 
5))^(1/2)/a+1/5*arctan(((-1)^(3/5)+tan(1/2*x))/(1+(-1)^(1/5))^(1/2))/(1+(- 
1)^(1/5))^(1/2)/a+1/5*arctan(((-1)^(4/5)+tan(1/2*x))/(1+(-1)^(3/5))^(1/2)) 
/(1+(-1)^(3/5))^(1/2)/a-1/5*arctan((-1)^(4/5)*(1+(-1)^(1/5)*tan(1/2*x))/(1 
+(-1)^(3/5))^(1/2))/(1+(-1)^(3/5))^(1/2)/a-1/5*arctan((-1)^(3/5)*(1+(-1)^( 
2/5)*tan(1/2*x))/(1+(-1)^(1/5))^(1/2))/(1+(-1)^(1/5))^(1/2)/a-1/5*arctan(( 
-1)^(2/5)*(1+(-1)^(3/5)*tan(1/2*x))/(1-(-1)^(4/5))^(1/2))/(1-(-1)^(4/5))^( 
1/2)/a-1/5*arctan((-1)^(1/5)*(1+(-1)^(4/5)*tan(1/2*x))/(1-(-1)^(2/5))^(1/2 
))/(1-(-1)^(2/5))^(1/2)/a+1/10*cos(x)/a/(1-sin(x))-1/10*cos(x)/a/(1+sin(x) 
)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 5.11 (sec) , antiderivative size = 417, normalized size of antiderivative = 0.99 \[ \int \frac {1}{a-a \sin ^{10}(x)} \, dx=-\frac {\text {RootSum}\left [1-12 \text {$\#$1}+68 \text {$\#$1}^2-244 \text {$\#$1}^3+630 \text {$\#$1}^4-244 \text {$\#$1}^5+68 \text {$\#$1}^6-12 \text {$\#$1}^7+\text {$\#$1}^8\&,\frac {2 \arctan \left (\frac {\sin (2 x)}{\cos (2 x)-\text {$\#$1}}\right )-i \log \left (1-2 \cos (2 x) \text {$\#$1}+\text {$\#$1}^2\right )-28 \arctan \left (\frac {\sin (2 x)}{\cos (2 x)-\text {$\#$1}}\right ) \text {$\#$1}+14 i \log \left (1-2 \cos (2 x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}+190 \arctan \left (\frac {\sin (2 x)}{\cos (2 x)-\text {$\#$1}}\right ) \text {$\#$1}^2-95 i \log \left (1-2 \cos (2 x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^2-840 \arctan \left (\frac {\sin (2 x)}{\cos (2 x)-\text {$\#$1}}\right ) \text {$\#$1}^3+420 i \log \left (1-2 \cos (2 x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^3+190 \arctan \left (\frac {\sin (2 x)}{\cos (2 x)-\text {$\#$1}}\right ) \text {$\#$1}^4-95 i \log \left (1-2 \cos (2 x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^4-28 \arctan \left (\frac {\sin (2 x)}{\cos (2 x)-\text {$\#$1}}\right ) \text {$\#$1}^5+14 i \log \left (1-2 \cos (2 x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^5+2 \arctan \left (\frac {\sin (2 x)}{\cos (2 x)-\text {$\#$1}}\right ) \text {$\#$1}^6-i \log \left (1-2 \cos (2 x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^6}{-3+34 \text {$\#$1}-183 \text {$\#$1}^2+630 \text {$\#$1}^3-305 \text {$\#$1}^4+102 \text {$\#$1}^5-21 \text {$\#$1}^6+2 \text {$\#$1}^7}\&\right ]-4 \tan (x)}{20 a} \] Input:

Integrate[(a - a*Sin[x]^10)^(-1),x]
 

Output:

-1/20*(RootSum[1 - 12*#1 + 68*#1^2 - 244*#1^3 + 630*#1^4 - 244*#1^5 + 68*# 
1^6 - 12*#1^7 + #1^8 & , (2*ArcTan[Sin[2*x]/(Cos[2*x] - #1)] - I*Log[1 - 2 
*Cos[2*x]*#1 + #1^2] - 28*ArcTan[Sin[2*x]/(Cos[2*x] - #1)]*#1 + (14*I)*Log 
[1 - 2*Cos[2*x]*#1 + #1^2]*#1 + 190*ArcTan[Sin[2*x]/(Cos[2*x] - #1)]*#1^2 
- (95*I)*Log[1 - 2*Cos[2*x]*#1 + #1^2]*#1^2 - 840*ArcTan[Sin[2*x]/(Cos[2*x 
] - #1)]*#1^3 + (420*I)*Log[1 - 2*Cos[2*x]*#1 + #1^2]*#1^3 + 190*ArcTan[Si 
n[2*x]/(Cos[2*x] - #1)]*#1^4 - (95*I)*Log[1 - 2*Cos[2*x]*#1 + #1^2]*#1^4 - 
 28*ArcTan[Sin[2*x]/(Cos[2*x] - #1)]*#1^5 + (14*I)*Log[1 - 2*Cos[2*x]*#1 + 
 #1^2]*#1^5 + 2*ArcTan[Sin[2*x]/(Cos[2*x] - #1)]*#1^6 - I*Log[1 - 2*Cos[2* 
x]*#1 + #1^2]*#1^6)/(-3 + 34*#1 - 183*#1^2 + 630*#1^3 - 305*#1^4 + 102*#1^ 
5 - 21*#1^6 + 2*#1^7) & ] - 4*Tan[x])/a
 

Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 150, normalized size of antiderivative = 0.36, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.818, Rules used = {3042, 3690, 3042, 3654, 3042, 3660, 216, 4254, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{a-a \sin ^{10}(x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{a-a \sin (x)^{10}}dx\)

\(\Big \downarrow \) 3690

\(\displaystyle \frac {\int \frac {1}{1-\sin ^2(x)}dx}{5 a}+\frac {\int \frac {1}{\sqrt [5]{-1} \sin ^2(x)+1}dx}{5 a}+\frac {\int \frac {1}{1-(-1)^{2/5} \sin ^2(x)}dx}{5 a}+\frac {\int \frac {1}{(-1)^{3/5} \sin ^2(x)+1}dx}{5 a}+\frac {\int \frac {1}{1-(-1)^{4/5} \sin ^2(x)}dx}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {1}{1-\sin (x)^2}dx}{5 a}+\frac {\int \frac {1}{\sqrt [5]{-1} \sin (x)^2+1}dx}{5 a}+\frac {\int \frac {1}{1-(-1)^{2/5} \sin (x)^2}dx}{5 a}+\frac {\int \frac {1}{(-1)^{3/5} \sin (x)^2+1}dx}{5 a}+\frac {\int \frac {1}{1-(-1)^{4/5} \sin (x)^2}dx}{5 a}\)

\(\Big \downarrow \) 3654

\(\displaystyle \frac {\int \frac {1}{\sqrt [5]{-1} \sin (x)^2+1}dx}{5 a}+\frac {\int \frac {1}{1-(-1)^{2/5} \sin (x)^2}dx}{5 a}+\frac {\int \frac {1}{(-1)^{3/5} \sin (x)^2+1}dx}{5 a}+\frac {\int \frac {1}{1-(-1)^{4/5} \sin (x)^2}dx}{5 a}+\frac {\int \sec ^2(x)dx}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {1}{\sqrt [5]{-1} \sin (x)^2+1}dx}{5 a}+\frac {\int \frac {1}{1-(-1)^{2/5} \sin (x)^2}dx}{5 a}+\frac {\int \frac {1}{(-1)^{3/5} \sin (x)^2+1}dx}{5 a}+\frac {\int \frac {1}{1-(-1)^{4/5} \sin (x)^2}dx}{5 a}+\frac {\int \csc \left (x+\frac {\pi }{2}\right )^2dx}{5 a}\)

\(\Big \downarrow \) 3660

\(\displaystyle \frac {\int \frac {1}{\left (1+\sqrt [5]{-1}\right ) \tan ^2(x)+1}d\tan (x)}{5 a}+\frac {\int \frac {1}{\left (1-(-1)^{2/5}\right ) \tan ^2(x)+1}d\tan (x)}{5 a}+\frac {\int \frac {1}{\left (1+(-1)^{3/5}\right ) \tan ^2(x)+1}d\tan (x)}{5 a}+\frac {\int \frac {1}{\left (1-(-1)^{4/5}\right ) \tan ^2(x)+1}d\tan (x)}{5 a}+\frac {\int \csc \left (x+\frac {\pi }{2}\right )^2dx}{5 a}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\int \csc \left (x+\frac {\pi }{2}\right )^2dx}{5 a}+\frac {\arctan \left (\sqrt {1+\sqrt [5]{-1}} \tan (x)\right )}{5 \sqrt {1+\sqrt [5]{-1}} a}+\frac {\arctan \left (\sqrt {1-(-1)^{2/5}} \tan (x)\right )}{5 \sqrt {1-(-1)^{2/5}} a}+\frac {\arctan \left (\sqrt {1+(-1)^{3/5}} \tan (x)\right )}{5 \sqrt {1+(-1)^{3/5}} a}+\frac {\arctan \left (\sqrt {1-(-1)^{4/5}} \tan (x)\right )}{5 \sqrt {1-(-1)^{4/5}} a}\)

\(\Big \downarrow \) 4254

\(\displaystyle -\frac {\int 1d(-\tan (x))}{5 a}+\frac {\arctan \left (\sqrt {1+\sqrt [5]{-1}} \tan (x)\right )}{5 \sqrt {1+\sqrt [5]{-1}} a}+\frac {\arctan \left (\sqrt {1-(-1)^{2/5}} \tan (x)\right )}{5 \sqrt {1-(-1)^{2/5}} a}+\frac {\arctan \left (\sqrt {1+(-1)^{3/5}} \tan (x)\right )}{5 \sqrt {1+(-1)^{3/5}} a}+\frac {\arctan \left (\sqrt {1-(-1)^{4/5}} \tan (x)\right )}{5 \sqrt {1-(-1)^{4/5}} a}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {\arctan \left (\sqrt {1+\sqrt [5]{-1}} \tan (x)\right )}{5 \sqrt {1+\sqrt [5]{-1}} a}+\frac {\arctan \left (\sqrt {1-(-1)^{2/5}} \tan (x)\right )}{5 \sqrt {1-(-1)^{2/5}} a}+\frac {\arctan \left (\sqrt {1+(-1)^{3/5}} \tan (x)\right )}{5 \sqrt {1+(-1)^{3/5}} a}+\frac {\arctan \left (\sqrt {1-(-1)^{4/5}} \tan (x)\right )}{5 \sqrt {1-(-1)^{4/5}} a}+\frac {\tan (x)}{5 a}\)

Input:

Int[(a - a*Sin[x]^10)^(-1),x]
 

Output:

ArcTan[Sqrt[1 + (-1)^(1/5)]*Tan[x]]/(5*Sqrt[1 + (-1)^(1/5)]*a) + ArcTan[Sq 
rt[1 - (-1)^(2/5)]*Tan[x]]/(5*Sqrt[1 - (-1)^(2/5)]*a) + ArcTan[Sqrt[1 + (- 
1)^(3/5)]*Tan[x]]/(5*Sqrt[1 + (-1)^(3/5)]*a) + ArcTan[Sqrt[1 - (-1)^(4/5)] 
*Tan[x]]/(5*Sqrt[1 - (-1)^(4/5)]*a) + Tan[x]/(5*a)
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3654
Int[(u_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Simp[ 
a^p   Int[ActivateTrig[u*cos[e + f*x]^(2*p)], x], x] /; FreeQ[{a, b, e, f, 
p}, x] && EqQ[a + b, 0] && IntegerQ[p]
 

rule 3660
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(-1), x_Symbol] :> With[{ff = 
FreeFactors[Tan[e + f*x], x]}, Simp[ff/f   Subst[Int[1/(a + (a + b)*ff^2*x^ 
2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x]
 

rule 3690
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(-1), x_Symbol] :> Module[{ 
k}, Simp[2/(a*n)   Sum[Int[1/(1 - Sin[e + f*x]^2/((-1)^(4*(k/n))*Rt[-a/b, n 
/2])), x], {k, 1, n/2}], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[n/2]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 3.67 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.19

method result size
default \(\frac {\frac {\tan \left (x \right )}{5}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (5 \textit {\_Z}^{8}+10 \textit {\_Z}^{6}+10 \textit {\_Z}^{4}+5 \textit {\_Z}^{2}+1\right )}{\sum }\frac {\left (10 \textit {\_R}^{6}+20 \textit {\_R}^{4}+15 \textit {\_R}^{2}+4\right ) \ln \left (\tan \left (x \right )-\textit {\_R} \right )}{4 \textit {\_R}^{7}+6 \textit {\_R}^{5}+4 \textit {\_R}^{3}+\textit {\_R}}\right )}{50}}{a}\) \(82\)
risch \(\frac {2 i}{5 a \left ({\mathrm e}^{2 i x}+1\right )}+\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (500000000 a^{8} \textit {\_Z}^{8}+10000000 a^{6} \textit {\_Z}^{6}+100000 a^{4} \textit {\_Z}^{4}+500 a^{2} \textit {\_Z}^{2}+1\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{2 i x}-100000000 i a^{7} \textit {\_R}^{7}+10000000 a^{6} \textit {\_R}^{6}-1000000 i a^{5} \textit {\_R}^{5}+100000 a^{4} \textit {\_R}^{4}-10000 i a^{3} \textit {\_R}^{3}+1000 a^{2} \textit {\_R}^{2}+1\right )\right )\) \(116\)

Input:

int(1/(a-a*sin(x)^10),x,method=_RETURNVERBOSE)
 

Output:

1/a*(1/5*tan(x)+1/50*sum((10*_R^6+20*_R^4+15*_R^2+4)/(4*_R^7+6*_R^5+4*_R^3 
+_R)*ln(tan(x)-_R),_R=RootOf(5*_Z^8+10*_Z^6+10*_Z^4+5*_Z^2+1)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2010 vs. \(2 (295) = 590\).

Time = 0.39 (sec) , antiderivative size = 2010, normalized size of antiderivative = 4.77 \[ \int \frac {1}{a-a \sin ^{10}(x)} \, dx=\text {Too large to display} \] Input:

integrate(1/(a-a*sin(x)^10),x, algorithm="fricas")
 

Output:

-1/20*(sqrt(1/2)*a*sqrt(-(a^2*sqrt(-(2*sqrt(1/5)*a^4*sqrt(a^(-8)) + 1)/a^4 
) + 1)/a^2)*cos(x)*log(10*sqrt(1/2)*(sqrt(1/5)*a^5*sqrt(a^(-8))*cos(x)*sin 
(x) - a*cos(x)*sin(x) + (sqrt(1/5)*a^7*sqrt(a^(-8))*cos(x)*sin(x) - a^3*co 
s(x)*sin(x))*sqrt(-(2*sqrt(1/5)*a^4*sqrt(a^(-8)) + 1)/a^4))*sqrt(-(a^2*sqr 
t(-(2*sqrt(1/5)*a^4*sqrt(a^(-8)) + 1)/a^4) + 1)/a^2) + 5*sqrt(1/5)*(2*a^4* 
cos(x)^2 - a^4)*sqrt(a^(-8)) - 6*cos(x)^2 - 5*(2*a^2*cos(x)^2 - a^2 - sqrt 
(1/5)*(2*a^6*cos(x)^2 - a^6)*sqrt(a^(-8)))*sqrt(-(2*sqrt(1/5)*a^4*sqrt(a^( 
-8)) + 1)/a^4) + 5) - sqrt(1/2)*a*sqrt(-(a^2*sqrt(-(2*sqrt(1/5)*a^4*sqrt(a 
^(-8)) + 1)/a^4) + 1)/a^2)*cos(x)*log(-10*sqrt(1/2)*(sqrt(1/5)*a^5*sqrt(a^ 
(-8))*cos(x)*sin(x) - a*cos(x)*sin(x) + (sqrt(1/5)*a^7*sqrt(a^(-8))*cos(x) 
*sin(x) - a^3*cos(x)*sin(x))*sqrt(-(2*sqrt(1/5)*a^4*sqrt(a^(-8)) + 1)/a^4) 
)*sqrt(-(a^2*sqrt(-(2*sqrt(1/5)*a^4*sqrt(a^(-8)) + 1)/a^4) + 1)/a^2) + 5*s 
qrt(1/5)*(2*a^4*cos(x)^2 - a^4)*sqrt(a^(-8)) - 6*cos(x)^2 - 5*(2*a^2*cos(x 
)^2 - a^2 - sqrt(1/5)*(2*a^6*cos(x)^2 - a^6)*sqrt(a^(-8)))*sqrt(-(2*sqrt(1 
/5)*a^4*sqrt(a^(-8)) + 1)/a^4) + 5) - sqrt(1/2)*a*sqrt((a^2*sqrt(-(2*sqrt( 
1/5)*a^4*sqrt(a^(-8)) + 1)/a^4) - 1)/a^2)*cos(x)*log(10*sqrt(1/2)*(sqrt(1/ 
5)*a^5*sqrt(a^(-8))*cos(x)*sin(x) - a*cos(x)*sin(x) - (sqrt(1/5)*a^7*sqrt( 
a^(-8))*cos(x)*sin(x) - a^3*cos(x)*sin(x))*sqrt(-(2*sqrt(1/5)*a^4*sqrt(a^( 
-8)) + 1)/a^4))*sqrt((a^2*sqrt(-(2*sqrt(1/5)*a^4*sqrt(a^(-8)) + 1)/a^4) - 
1)/a^2) - 5*sqrt(1/5)*(2*a^4*cos(x)^2 - a^4)*sqrt(a^(-8)) + 6*cos(x)^2 ...
 

Sympy [F]

\[ \int \frac {1}{a-a \sin ^{10}(x)} \, dx=- \frac {\int \frac {1}{\sin ^{10}{\left (x \right )} - 1}\, dx}{a} \] Input:

integrate(1/(a-a*sin(x)**10),x)
 

Output:

-Integral(1/(sin(x)**10 - 1), x)/a
 

Maxima [F]

\[ \int \frac {1}{a-a \sin ^{10}(x)} \, dx=\int { -\frac {1}{a \sin \left (x\right )^{10} - a} \,d x } \] Input:

integrate(1/(a-a*sin(x)^10),x, algorithm="maxima")
 

Output:

-1/5*(5*(a*cos(2*x)^2 + a*sin(2*x)^2 + 2*a*cos(2*x) + a)*integrate(4/5*((c 
os(14*x) - 14*cos(12*x) + 95*cos(10*x) - 420*cos(8*x) + 95*cos(6*x) - 14*c 
os(4*x) + cos(2*x))*cos(16*x) + (236*cos(12*x) - 1384*cos(10*x) + 5670*cos 
(8*x) - 1384*cos(6*x) + 236*cos(4*x) - 24*cos(2*x) + 1)*cos(14*x) - 12*cos 
(14*x)^2 + 2*(4938*cos(10*x) - 18690*cos(8*x) + 4938*cos(6*x) - 952*cos(4* 
x) + 118*cos(2*x) - 7)*cos(12*x) - 952*cos(12*x)^2 + (162330*cos(8*x) - 46 
360*cos(6*x) + 9876*cos(4*x) - 1384*cos(2*x) + 95)*cos(10*x) - 23180*cos(1 
0*x)^2 + 210*(773*cos(6*x) - 178*cos(4*x) + 27*cos(2*x) - 2)*cos(8*x) - 26 
4600*cos(8*x)^2 + (9876*cos(4*x) - 1384*cos(2*x) + 95)*cos(6*x) - 23180*co 
s(6*x)^2 + 2*(118*cos(2*x) - 7)*cos(4*x) - 952*cos(4*x)^2 - 12*cos(2*x)^2 
+ (sin(14*x) - 14*sin(12*x) + 95*sin(10*x) - 420*sin(8*x) + 95*sin(6*x) - 
14*sin(4*x) + sin(2*x))*sin(16*x) + 2*(118*sin(12*x) - 692*sin(10*x) + 283 
5*sin(8*x) - 692*sin(6*x) + 118*sin(4*x) - 12*sin(2*x))*sin(14*x) - 12*sin 
(14*x)^2 + 4*(2469*sin(10*x) - 9345*sin(8*x) + 2469*sin(6*x) - 476*sin(4*x 
) + 59*sin(2*x))*sin(12*x) - 952*sin(12*x)^2 + 2*(81165*sin(8*x) - 23180*s 
in(6*x) + 4938*sin(4*x) - 692*sin(2*x))*sin(10*x) - 23180*sin(10*x)^2 + 21 
0*(773*sin(6*x) - 178*sin(4*x) + 27*sin(2*x))*sin(8*x) - 264600*sin(8*x)^2 
 + 4*(2469*sin(4*x) - 346*sin(2*x))*sin(6*x) - 23180*sin(6*x)^2 - 952*sin( 
4*x)^2 + 236*sin(4*x)*sin(2*x) - 12*sin(2*x)^2 + cos(2*x))/(a*cos(16*x)^2 
+ 144*a*cos(14*x)^2 + 4624*a*cos(12*x)^2 + 59536*a*cos(10*x)^2 + 396900...
 

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{a-a \sin ^{10}(x)} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(1/(a-a*sin(x)^10),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Degree mismatch inside factorisatio 
n over extensionUnable to transpose Error: Bad Argument ValueDegree mismat 
ch inside
 

Mupad [B] (verification not implemented)

Time = 37.65 (sec) , antiderivative size = 1176, normalized size of antiderivative = 2.79 \[ \int \frac {1}{a-a \sin ^{10}(x)} \, dx=\text {Too large to display} \] Input:

int(1/(a - a*sin(x)^10),x)
 

Output:

tan(x)/(5*a) + atan((tan(x)*(- (- (2*5^(1/2))/5 - 1)^(1/2)/(200*a^2) - 1/( 
200*a^2))^(1/2)*5i)/((4*(- (2*5^(1/2))/5 - 1)^(1/2))/a - (2*5^(1/2)*(- (2* 
5^(1/2))/5 - 1)^(1/2))/a) - (5^(1/2)*tan(x)*(- (- (2*5^(1/2))/5 - 1)^(1/2) 
/(200*a^2) - 1/(200*a^2))^(1/2)*5i)/((4*(- (2*5^(1/2))/5 - 1)^(1/2))/a - ( 
2*5^(1/2)*(- (2*5^(1/2))/5 - 1)^(1/2))/a) + (tan(x)*(- (- (2*5^(1/2))/5 - 
1)^(1/2)/(200*a^2) - 1/(200*a^2))^(1/2)*(- (2*5^(1/2))/5 - 1)^(1/2)*75i)/( 
(4*(- (2*5^(1/2))/5 - 1)^(1/2))/a - (2*5^(1/2)*(- (2*5^(1/2))/5 - 1)^(1/2) 
)/a) - (5^(1/2)*tan(x)*(- (- (2*5^(1/2))/5 - 1)^(1/2)/(200*a^2) - 1/(200*a 
^2))^(1/2)*(- (2*5^(1/2))/5 - 1)^(1/2)*35i)/((4*(- (2*5^(1/2))/5 - 1)^(1/2 
))/a - (2*5^(1/2)*(- (2*5^(1/2))/5 - 1)^(1/2))/a))*(-((- (2*5^(1/2))/5 - 1 
)^(1/2) + 1)/(200*a^2))^(1/2)*2i - atan((tan(x)*((- (2*5^(1/2))/5 - 1)^(1/ 
2)/(200*a^2) - 1/(200*a^2))^(1/2)*5i)/((4*(- (2*5^(1/2))/5 - 1)^(1/2))/a - 
 (2*5^(1/2)*(- (2*5^(1/2))/5 - 1)^(1/2))/a) - (5^(1/2)*tan(x)*((- (2*5^(1/ 
2))/5 - 1)^(1/2)/(200*a^2) - 1/(200*a^2))^(1/2)*5i)/((4*(- (2*5^(1/2))/5 - 
 1)^(1/2))/a - (2*5^(1/2)*(- (2*5^(1/2))/5 - 1)^(1/2))/a) - (tan(x)*((- (2 
*5^(1/2))/5 - 1)^(1/2)/(200*a^2) - 1/(200*a^2))^(1/2)*(- (2*5^(1/2))/5 - 1 
)^(1/2)*75i)/((4*(- (2*5^(1/2))/5 - 1)^(1/2))/a - (2*5^(1/2)*(- (2*5^(1/2) 
)/5 - 1)^(1/2))/a) + (5^(1/2)*tan(x)*((- (2*5^(1/2))/5 - 1)^(1/2)/(200*a^2 
) - 1/(200*a^2))^(1/2)*(- (2*5^(1/2))/5 - 1)^(1/2)*35i)/((4*(- (2*5^(1/2)) 
/5 - 1)^(1/2))/a - (2*5^(1/2)*(- (2*5^(1/2))/5 - 1)^(1/2))/a))*(((- (2*...
 

Reduce [F]

\[ \int \frac {1}{a-a \sin ^{10}(x)} \, dx=-\frac {\int \frac {1}{\sin \left (x \right )^{10}-1}d x}{a} \] Input:

int(1/(a-a*sin(x)^10),x)
 

Output:

( - int(1/(sin(x)**10 - 1),x))/a