\(\int \frac {1}{a-b \sin ^8(x)} \, dx\) [74]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 11, antiderivative size = 181 \[ \int \frac {1}{a-b \sin ^8(x)} \, dx=\frac {\arctan \left (\sqrt {1-i \sqrt [4]{\frac {b}{a}}} \tan (x)\right )}{4 a \sqrt {1-i \sqrt [4]{\frac {b}{a}}}}+\frac {\arctan \left (\sqrt {1+\sqrt [4]{\frac {b}{a}}} \tan (x)\right )}{4 a \sqrt {1+\sqrt [4]{\frac {b}{a}}}}+\frac {\text {arctanh}\left (\sqrt {-1-i \sqrt [4]{\frac {b}{a}}} \tan (x)\right )}{4 a \sqrt {-1-i \sqrt [4]{\frac {b}{a}}}}+\frac {\text {arctanh}\left (\sqrt {-1+\sqrt [4]{\frac {b}{a}}} \tan (x)\right )}{4 a \sqrt {-1+\sqrt [4]{\frac {b}{a}}}} \] Output:

1/4*arctan((1-I*(b/a)^(1/4))^(1/2)*tan(x))/a/(1-I*(b/a)^(1/4))^(1/2)+1/4*a 
rctan((1+(b/a)^(1/4))^(1/2)*tan(x))/a/(1+(b/a)^(1/4))^(1/2)+1/4*arctanh((- 
1-I*(b/a)^(1/4))^(1/2)*tan(x))/a/(-1-I*(b/a)^(1/4))^(1/2)+1/4*arctanh((-1+ 
(b/a)^(1/4))^(1/2)*tan(x))/a/(-1+(b/a)^(1/4))^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 5.14 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.96 \[ \int \frac {1}{a-b \sin ^8(x)} \, dx=-8 \text {RootSum}\left [b-8 b \text {$\#$1}+28 b \text {$\#$1}^2-56 b \text {$\#$1}^3-256 a \text {$\#$1}^4+70 b \text {$\#$1}^4-56 b \text {$\#$1}^5+28 b \text {$\#$1}^6-8 b \text {$\#$1}^7+b \text {$\#$1}^8\&,\frac {2 \arctan \left (\frac {\sin (2 x)}{\cos (2 x)-\text {$\#$1}}\right ) \text {$\#$1}^3-i \log \left (1-2 \cos (2 x) \text {$\#$1}+\text {$\#$1}^2\right ) \text {$\#$1}^3}{-b+7 b \text {$\#$1}-21 b \text {$\#$1}^2-128 a \text {$\#$1}^3+35 b \text {$\#$1}^3-35 b \text {$\#$1}^4+21 b \text {$\#$1}^5-7 b \text {$\#$1}^6+b \text {$\#$1}^7}\&\right ] \] Input:

Integrate[(a - b*Sin[x]^8)^(-1),x]
 

Output:

-8*RootSum[b - 8*b*#1 + 28*b*#1^2 - 56*b*#1^3 - 256*a*#1^4 + 70*b*#1^4 - 5 
6*b*#1^5 + 28*b*#1^6 - 8*b*#1^7 + b*#1^8 & , (2*ArcTan[Sin[2*x]/(Cos[2*x] 
- #1)]*#1^3 - I*Log[1 - 2*Cos[2*x]*#1 + #1^2]*#1^3)/(-b + 7*b*#1 - 21*b*#1 
^2 - 128*a*#1^3 + 35*b*#1^3 - 35*b*#1^4 + 21*b*#1^5 - 7*b*#1^6 + b*#1^7) & 
 ]
 

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.18, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {3042, 3690, 3042, 3660, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{a-b \sin ^8(x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{a-b \sin (x)^8}dx\)

\(\Big \downarrow \) 3690

\(\displaystyle \frac {\int \frac {1}{1-\frac {\sqrt [4]{b} \sin ^2(x)}{\sqrt [4]{a}}}dx}{4 a}+\frac {\int \frac {1}{1-\frac {i \sqrt [4]{b} \sin ^2(x)}{\sqrt [4]{a}}}dx}{4 a}+\frac {\int \frac {1}{\frac {i \sqrt [4]{b} \sin ^2(x)}{\sqrt [4]{a}}+1}dx}{4 a}+\frac {\int \frac {1}{\frac {\sqrt [4]{b} \sin ^2(x)}{\sqrt [4]{a}}+1}dx}{4 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {1}{1-\frac {\sqrt [4]{b} \sin (x)^2}{\sqrt [4]{a}}}dx}{4 a}+\frac {\int \frac {1}{1-\frac {i \sqrt [4]{b} \sin (x)^2}{\sqrt [4]{a}}}dx}{4 a}+\frac {\int \frac {1}{\frac {i \sqrt [4]{b} \sin (x)^2}{\sqrt [4]{a}}+1}dx}{4 a}+\frac {\int \frac {1}{\frac {\sqrt [4]{b} \sin (x)^2}{\sqrt [4]{a}}+1}dx}{4 a}\)

\(\Big \downarrow \) 3660

\(\displaystyle \frac {\int \frac {1}{\left (1-\frac {\sqrt [4]{b}}{\sqrt [4]{a}}\right ) \tan ^2(x)+1}d\tan (x)}{4 a}+\frac {\int \frac {1}{\left (1-\frac {i \sqrt [4]{b}}{\sqrt [4]{a}}\right ) \tan ^2(x)+1}d\tan (x)}{4 a}+\frac {\int \frac {1}{\left (\frac {i \sqrt [4]{b}}{\sqrt [4]{a}}+1\right ) \tan ^2(x)+1}d\tan (x)}{4 a}+\frac {\int \frac {1}{\left (\frac {\sqrt [4]{b}}{\sqrt [4]{a}}+1\right ) \tan ^2(x)+1}d\tan (x)}{4 a}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\arctan \left (\frac {\sqrt {\sqrt [4]{a}-\sqrt [4]{b}} \tan (x)}{\sqrt [8]{a}}\right )}{4 a^{7/8} \sqrt {\sqrt [4]{a}-\sqrt [4]{b}}}+\frac {\arctan \left (\frac {\sqrt {\sqrt [4]{a}-i \sqrt [4]{b}} \tan (x)}{\sqrt [8]{a}}\right )}{4 a^{7/8} \sqrt {\sqrt [4]{a}-i \sqrt [4]{b}}}+\frac {\arctan \left (\frac {\sqrt {\sqrt [4]{a}+i \sqrt [4]{b}} \tan (x)}{\sqrt [8]{a}}\right )}{4 a^{7/8} \sqrt {\sqrt [4]{a}+i \sqrt [4]{b}}}+\frac {\arctan \left (\frac {\sqrt {\sqrt [4]{a}+\sqrt [4]{b}} \tan (x)}{\sqrt [8]{a}}\right )}{4 a^{7/8} \sqrt {\sqrt [4]{a}+\sqrt [4]{b}}}\)

Input:

Int[(a - b*Sin[x]^8)^(-1),x]
 

Output:

ArcTan[(Sqrt[a^(1/4) - b^(1/4)]*Tan[x])/a^(1/8)]/(4*a^(7/8)*Sqrt[a^(1/4) - 
 b^(1/4)]) + ArcTan[(Sqrt[a^(1/4) - I*b^(1/4)]*Tan[x])/a^(1/8)]/(4*a^(7/8) 
*Sqrt[a^(1/4) - I*b^(1/4)]) + ArcTan[(Sqrt[a^(1/4) + I*b^(1/4)]*Tan[x])/a^ 
(1/8)]/(4*a^(7/8)*Sqrt[a^(1/4) + I*b^(1/4)]) + ArcTan[(Sqrt[a^(1/4) + b^(1 
/4)]*Tan[x])/a^(1/8)]/(4*a^(7/8)*Sqrt[a^(1/4) + b^(1/4)])
 

Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3660
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(-1), x_Symbol] :> With[{ff = 
FreeFactors[Tan[e + f*x], x]}, Simp[ff/f   Subst[Int[1/(a + (a + b)*ff^2*x^ 
2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x]
 

rule 3690
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(-1), x_Symbol] :> Module[{ 
k}, Simp[2/(a*n)   Sum[Int[1/(1 - Sin[e + f*x]^2/((-1)^(4*(k/n))*Rt[-a/b, n 
/2])), x], {k, 1, n/2}], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[n/2]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 1.59 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.49

method result size
default \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (a -b \right ) \textit {\_Z}^{8}+4 a \,\textit {\_Z}^{6}+6 a \,\textit {\_Z}^{4}+4 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\left (\textit {\_R}^{6}+3 \textit {\_R}^{4}+3 \textit {\_R}^{2}+1\right ) \ln \left (\tan \left (x \right )-\textit {\_R} \right )}{\textit {\_R}^{7} a -\textit {\_R}^{7} b +3 \textit {\_R}^{5} a +3 \textit {\_R}^{3} a +a \textit {\_R}}\right )}{8}\) \(88\)
risch \(\munderset {\textit {\_R} =\operatorname {RootOf}\left (1+\left (16777216 a^{8}-16777216 a^{7} b \right ) \textit {\_Z}^{8}+1048576 a^{6} \textit {\_Z}^{6}+24576 a^{4} \textit {\_Z}^{4}+256 a^{2} \textit {\_Z}^{2}\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{2 i x}+\left (\frac {4194304 i a^{8}}{b}-4194304 i a^{7}\right ) \textit {\_R}^{7}+\left (-\frac {524288 a^{7}}{b}+524288 a^{6}\right ) \textit {\_R}^{6}+\left (\frac {196608 i a^{6}}{b}+65536 i a^{5}\right ) \textit {\_R}^{5}+\left (-\frac {24576 a^{5}}{b}-8192 a^{4}\right ) \textit {\_R}^{4}+\left (\frac {3072 i a^{4}}{b}-1024 i a^{3}\right ) \textit {\_R}^{3}+\left (-\frac {384 a^{3}}{b}+128 a^{2}\right ) \textit {\_R}^{2}+\left (\frac {16 i a^{2}}{b}+16 i a \right ) \textit {\_R} -\frac {2 a}{b}-1\right )\) \(193\)

Input:

int(1/(a-b*sin(x)^8),x,method=_RETURNVERBOSE)
 

Output:

1/8*sum((_R^6+3*_R^4+3*_R^2+1)/(_R^7*a-_R^7*b+3*_R^5*a+3*_R^3*a+_R*a)*ln(t 
an(x)-_R),_R=RootOf((a-b)*_Z^8+4*a*_Z^6+6*a*_Z^4+4*a*_Z^2+a))
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 643307 vs. \(2 (133) = 266\).

Time = 6.08 (sec) , antiderivative size = 643307, normalized size of antiderivative = 3554.18 \[ \int \frac {1}{a-b \sin ^8(x)} \, dx=\text {Too large to display} \] Input:

integrate(1/(a-b*sin(x)^8),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {1}{a-b \sin ^8(x)} \, dx=\int \frac {1}{a - b \sin ^{8}{\left (x \right )}}\, dx \] Input:

integrate(1/(a-b*sin(x)**8),x)
 

Output:

Integral(1/(a - b*sin(x)**8), x)
 

Maxima [F]

\[ \int \frac {1}{a-b \sin ^8(x)} \, dx=\int { -\frac {1}{b \sin \left (x\right )^{8} - a} \,d x } \] Input:

integrate(1/(a-b*sin(x)^8),x, algorithm="maxima")
 

Output:

-integrate(1/(b*sin(x)^8 - a), x)
 

Giac [F]

\[ \int \frac {1}{a-b \sin ^8(x)} \, dx=\int { -\frac {1}{b \sin \left (x\right )^{8} - a} \,d x } \] Input:

integrate(1/(a-b*sin(x)^8),x, algorithm="giac")
 

Output:

integrate(-1/(b*sin(x)^8 - a), x)
 

Mupad [B] (verification not implemented)

Time = 39.91 (sec) , antiderivative size = 818, normalized size of antiderivative = 4.52 \[ \int \frac {1}{a-b \sin ^8(x)} \, dx =\text {Too large to display} \] Input:

int(1/(a - b*sin(x)^8),x)
 

Output:

symsum(log(-2*b^5*(a - b)*(4*root(16777216*a^7*b*d^8 - 16777216*a^8*d^8 - 
1048576*a^6*d^6 - 24576*a^4*d^4 - 256*a^2*d^2 - 1, d, k)*b*tan(x) - 43008* 
root(16777216*a^7*b*d^8 - 16777216*a^8*d^8 - 1048576*a^6*d^6 - 24576*a^4*d 
^4 - 256*a^2*d^2 - 1, d, k)^4*a^4 - 786432*root(16777216*a^7*b*d^8 - 16777 
216*a^8*d^8 - 1048576*a^6*d^6 - 24576*a^4*d^4 - 256*a^2*d^2 - 1, d, k)^6*a 
^6 - 800*root(16777216*a^7*b*d^8 - 16777216*a^8*d^8 - 1048576*a^6*d^6 - 24 
576*a^4*d^4 - 256*a^2*d^2 - 1, d, k)^2*a^2 - 6144*root(16777216*a^7*b*d^8 
- 16777216*a^8*d^8 - 1048576*a^6*d^6 - 24576*a^4*d^4 - 256*a^2*d^2 - 1, d, 
 k)^4*a^3*b + 786432*root(16777216*a^7*b*d^8 - 16777216*a^8*d^8 - 1048576* 
a^6*d^6 - 24576*a^4*d^4 - 256*a^2*d^2 - 1, d, k)^6*a^5*b + 9984*root(16777 
216*a^7*b*d^8 - 16777216*a^8*d^8 - 1048576*a^6*d^6 - 24576*a^4*d^4 - 256*a 
^2*d^2 - 1, d, k)^3*a^3*tan(x) + 557056*root(16777216*a^7*b*d^8 - 16777216 
*a^8*d^8 - 1048576*a^6*d^6 - 24576*a^4*d^4 - 256*a^2*d^2 - 1, d, k)^5*a^5* 
tan(x) + 10485760*root(16777216*a^7*b*d^8 - 16777216*a^8*d^8 - 1048576*a^6 
*d^6 - 24576*a^4*d^4 - 256*a^2*d^2 - 1, d, k)^7*a^7*tan(x) + 32*root(16777 
216*a^7*b*d^8 - 16777216*a^8*d^8 - 1048576*a^6*d^6 - 24576*a^4*d^4 - 256*a 
^2*d^2 - 1, d, k)^2*a*b + 60*root(16777216*a^7*b*d^8 - 16777216*a^8*d^8 - 
1048576*a^6*d^6 - 24576*a^4*d^4 - 256*a^2*d^2 - 1, d, k)*a*tan(x) - 768*ro 
ot(16777216*a^7*b*d^8 - 16777216*a^8*d^8 - 1048576*a^6*d^6 - 24576*a^4*d^4 
 - 256*a^2*d^2 - 1, d, k)^3*a^2*b*tan(x) + 98304*root(16777216*a^7*b*d^...
 

Reduce [F]

\[ \int \frac {1}{a-b \sin ^8(x)} \, dx=-\left (\int \frac {1}{\sin \left (x \right )^{8} b -a}d x \right ) \] Input:

int(1/(a-b*sin(x)^8),x)
 

Output:

 - int(1/(sin(x)**8*b - a),x)