\(\int \frac {\csc ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx\) [101]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 177 \[ \int \frac {\csc ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=-\frac {\cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a f}-\frac {\sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {\sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{f \sqrt {a+b \sin ^2(e+f x)}} \] Output:

-cot(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/a/f-(cos(f*x+e)^2)^(1/2)*EllipticE(si 
n(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/a/f/(1+b*sin(f* 
x+e)^2/a)^(1/2)+(cos(f*x+e)^2)^(1/2)*EllipticF(sin(f*x+e),(-b/a)^(1/2))*se 
c(f*x+e)*(1+b*sin(f*x+e)^2/a)^(1/2)/f/(a+b*sin(f*x+e)^2)^(1/2)
 

Mathematica [A] (verified)

Time = 0.97 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.78 \[ \int \frac {\csc ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\frac {-\sqrt {2} (2 a+b-b \cos (2 (e+f x))) \cot (e+f x)-2 a \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )+2 a \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )}{2 a f \sqrt {2 a+b-b \cos (2 (e+f x))}} \] Input:

Integrate[Csc[e + f*x]^2/Sqrt[a + b*Sin[e + f*x]^2],x]
 

Output:

(-(Sqrt[2]*(2*a + b - b*Cos[2*(e + f*x)])*Cot[e + f*x]) - 2*a*Sqrt[(2*a + 
b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] + 2*a*Sqrt[(2*a + b 
- b*Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)])/(2*a*f*Sqrt[2*a + b - 
 b*Cos[2*(e + f*x)]])
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.02, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3667, 382, 25, 27, 389, 323, 321, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\csc ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (e+f x)^2 \sqrt {a+b \sin (e+f x)^2}}dx\)

\(\Big \downarrow \) 3667

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \int \frac {\csc ^2(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 382

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {\int -\frac {b \sin ^2(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{a}-\frac {\sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a}\right )}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (-\frac {\int \frac {b \sin ^2(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{a}-\frac {\sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a}\right )}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (-\frac {b \int \frac {\sin ^2(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{a}-\frac {\sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a}\right )}{f}\)

\(\Big \downarrow \) 389

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (-\frac {b \left (\frac {\int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}-\frac {a \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{b}\right )}{a}-\frac {\sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a}\right )}{f}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (-\frac {b \left (\frac {\int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}-\frac {a \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}d\sin (e+f x)}{b \sqrt {a+b \sin ^2(e+f x)}}\right )}{a}-\frac {\sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a}\right )}{f}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (-\frac {b \left (\frac {\int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}-\frac {a \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}\right )}{a}-\frac {\sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a}\right )}{f}\)

\(\Big \downarrow \) 330

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (-\frac {b \left (\frac {\sqrt {a+b \sin ^2(e+f x)} \int \frac {\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-\frac {a \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}\right )}{a}-\frac {\sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a}\right )}{f}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (-\frac {b \left (\frac {\sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}-\frac {a \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}\right )}{a}-\frac {\sqrt {1-\sin ^2(e+f x)} \csc (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{a}\right )}{f}\)

Input:

Int[Csc[e + f*x]^2/Sqrt[a + b*Sin[e + f*x]^2],x]
 

Output:

(Sqrt[Cos[e + f*x]^2]*Sec[e + f*x]*(-((Csc[e + f*x]*Sqrt[1 - Sin[e + f*x]^ 
2]*Sqrt[a + b*Sin[e + f*x]^2])/a) - (b*((EllipticE[ArcSin[Sin[e + f*x]], - 
(b/a)]*Sqrt[a + b*Sin[e + f*x]^2])/(b*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) - (a 
*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/( 
b*Sqrt[a + b*Sin[e + f*x]^2])))/a))/f
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 382
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> Simp[(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/ 
(a*c*e*(m + 1))), x] - Simp[1/(a*c*e^2*(m + 1))   Int[(e*x)^(m + 2)*(a + b* 
x^2)^p*(c + d*x^2)^q*Simp[(b*c + a*d)*(m + 3) + 2*(b*c*p + a*d*q) + b*d*(m 
+ 2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[ 
b*c - a*d, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 389
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[1/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] - Simp[a/b   Int 
[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && N 
eQ[b*c - a*d, 0] &&  !SimplerSqrtQ[-b/a, -d/c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3667
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^( 
p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff^(m + 1 
)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x]))   Subst[Int[x^m*((a + b*ff^2*x^2) 
^p/Sqrt[1 - ff^2*x^2]), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, 
p}, x] && IntegerQ[m/2] &&  !IntegerQ[p]
 
Maple [A] (verified)

Time = 0.86 (sec) , antiderivative size = 140, normalized size of antiderivative = 0.79

method result size
default \(\frac {b \cos \left (f x +e \right )^{4}+\left (-a -b \right ) \cos \left (f x +e \right )^{2}+\sin \left (f x +e \right ) \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \cos \left (f x +e \right )^{2}}{a}+\frac {a +b}{a}}\, a \left (\operatorname {EllipticF}\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right )-\operatorname {EllipticE}\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right )\right )}{a \sin \left (f x +e \right ) \cos \left (f x +e \right ) \sqrt {a +b \sin \left (f x +e \right )^{2}}\, f}\) \(140\)

Input:

int(csc(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

(b*cos(f*x+e)^4+(-a-b)*cos(f*x+e)^2+sin(f*x+e)*(cos(f*x+e)^2)^(1/2)*(-b/a* 
cos(f*x+e)^2+(a+b)/a)^(1/2)*a*(EllipticF(sin(f*x+e),(-b/a)^(1/2))-Elliptic 
E(sin(f*x+e),(-b/a)^(1/2))))/a/sin(f*x+e)/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1 
/2)/f
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.13 (sec) , antiderivative size = 643, normalized size of antiderivative = 3.63 \[ \int \frac {\csc ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx =\text {Too large to display} \] Input:

integrate(csc(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")
 

Output:

-1/2*(-4*I*sqrt(-b)*b*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*sqrt(( 
a^2 + a*b)/b^2)*elliptic_f(arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + 
b)/b)*(cos(f*x + e) + I*sin(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + 
b^2)*sqrt((a^2 + a*b)/b^2))/b^2)*sin(f*x + e) + 4*I*sqrt(-b)*b*sqrt((2*b*s 
qrt((a^2 + a*b)/b^2) + 2*a + b)/b)*sqrt((a^2 + a*b)/b^2)*elliptic_f(arcsin 
(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) - I*sin(f*x + 
 e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2)* 
sin(f*x + e) + 2*sqrt(-b*cos(f*x + e)^2 + a + b)*b*cos(f*x + e) + (2*I*sqr 
t(-b)*b*sqrt((a^2 + a*b)/b^2)*sin(f*x + e) + (2*I*a + I*b)*sqrt(-b)*sin(f* 
x + e))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_e(arcsin(sq 
rt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) + I*sin(f*x + e) 
)), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2))/b^2) + ( 
-2*I*sqrt(-b)*b*sqrt((a^2 + a*b)/b^2)*sin(f*x + e) + (-2*I*a - I*b)*sqrt(- 
b)*sin(f*x + e))*sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*elliptic_e( 
arcsin(sqrt((2*b*sqrt((a^2 + a*b)/b^2) + 2*a + b)/b)*(cos(f*x + e) - I*sin 
(f*x + e))), (8*a^2 + 8*a*b + b^2 - 4*(2*a*b + b^2)*sqrt((a^2 + a*b)/b^2)) 
/b^2))/(a*b*f*sin(f*x + e))
 

Sympy [F]

\[ \int \frac {\csc ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\int \frac {\csc ^{2}{\left (e + f x \right )}}{\sqrt {a + b \sin ^{2}{\left (e + f x \right )}}}\, dx \] Input:

integrate(csc(f*x+e)**2/(a+b*sin(f*x+e)**2)**(1/2),x)
 

Output:

Integral(csc(e + f*x)**2/sqrt(a + b*sin(e + f*x)**2), x)
 

Maxima [F]

\[ \int \frac {\csc ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\int { \frac {\csc \left (f x + e\right )^{2}}{\sqrt {b \sin \left (f x + e\right )^{2} + a}} \,d x } \] Input:

integrate(csc(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")
 

Output:

integrate(csc(f*x + e)^2/sqrt(b*sin(f*x + e)^2 + a), x)
 

Giac [F]

\[ \int \frac {\csc ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\int { \frac {\csc \left (f x + e\right )^{2}}{\sqrt {b \sin \left (f x + e\right )^{2} + a}} \,d x } \] Input:

integrate(csc(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")
 

Output:

integrate(csc(f*x + e)^2/sqrt(b*sin(f*x + e)^2 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\csc ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\int \frac {1}{{\sin \left (e+f\,x\right )}^2\,\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a}} \,d x \] Input:

int(1/(sin(e + f*x)^2*(a + b*sin(e + f*x)^2)^(1/2)),x)
 

Output:

int(1/(sin(e + f*x)^2*(a + b*sin(e + f*x)^2)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {\csc ^2(e+f x)}{\sqrt {a+b \sin ^2(e+f x)}} \, dx=\int \frac {\sqrt {\sin \left (f x +e \right )^{2} b +a}\, \csc \left (f x +e \right )^{2}}{\sin \left (f x +e \right )^{2} b +a}d x \] Input:

int(csc(f*x+e)^2/(a+b*sin(f*x+e)^2)^(1/2),x)
 

Output:

int((sqrt(sin(e + f*x)**2*b + a)*csc(e + f*x)**2)/(sin(e + f*x)**2*b + a), 
x)