\(\int \frac {\sin ^6(e+f x)}{(a+b \sin ^2(e+f x))^{3/2}} \, dx\) [107]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 274 \[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\frac {a \cos (e+f x) \sin ^3(e+f x)}{b (a+b) f \sqrt {a+b \sin ^2(e+f x)}}-\frac {(4 a+b) \cos (e+f x) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 b^2 (a+b) f}-\frac {\left (8 a^2+3 a b-2 b^2\right ) \sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 b^3 (a+b) f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {a (8 a-b) \sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{3 b^3 f \sqrt {a+b \sin ^2(e+f x)}} \] Output:

a*cos(f*x+e)*sin(f*x+e)^3/b/(a+b)/f/(a+b*sin(f*x+e)^2)^(1/2)-1/3*(4*a+b)*c 
os(f*x+e)*sin(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/b^2/(a+b)/f-1/3*(8*a^2+3*a*b 
-2*b^2)*(cos(f*x+e)^2)^(1/2)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e) 
*(a+b*sin(f*x+e)^2)^(1/2)/b^3/(a+b)/f/(1+b*sin(f*x+e)^2/a)^(1/2)+1/3*a*(8* 
a-b)*(cos(f*x+e)^2)^(1/2)*EllipticF(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(1 
+b*sin(f*x+e)^2/a)^(1/2)/b^3/f/(a+b*sin(f*x+e)^2)^(1/2)
 

Mathematica [A] (verified)

Time = 1.89 (sec) , antiderivative size = 197, normalized size of antiderivative = 0.72 \[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\frac {-2 \sqrt {2} a \left (8 a^2+3 a b-2 b^2\right ) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )+2 \sqrt {2} a \left (8 a^2+7 a b-b^2\right ) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )+b \left (-8 a^2-3 a b-b^2+b (a+b) \cos (2 (e+f x))\right ) \sin (2 (e+f x))}{6 \sqrt {2} b^3 (a+b) f \sqrt {2 a+b-b \cos (2 (e+f x))}} \] Input:

Integrate[Sin[e + f*x]^6/(a + b*Sin[e + f*x]^2)^(3/2),x]
 

Output:

(-2*Sqrt[2]*a*(8*a^2 + 3*a*b - 2*b^2)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/ 
a]*EllipticE[e + f*x, -(b/a)] + 2*Sqrt[2]*a*(8*a^2 + 7*a*b - b^2)*Sqrt[(2* 
a + b - b*Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)] + b*(-8*a^2 - 3* 
a*b - b^2 + b*(a + b)*Cos[2*(e + f*x)])*Sin[2*(e + f*x)])/(6*Sqrt[2]*b^3*( 
a + b)*f*Sqrt[2*a + b - b*Cos[2*(e + f*x)]])
 

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 275, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3667, 372, 444, 25, 399, 323, 321, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (e+f x)^6}{\left (a+b \sin (e+f x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 3667

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \int \frac {\sin ^6(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \left (b \sin ^2(e+f x)+a\right )^{3/2}}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 372

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {a \sin ^3(e+f x) \sqrt {1-\sin ^2(e+f x)}}{b (a+b) \sqrt {a+b \sin ^2(e+f x)}}-\frac {\int \frac {\sin ^2(e+f x) \left (3 a-(4 a+b) \sin ^2(e+f x)\right )}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{b (a+b)}\right )}{f}\)

\(\Big \downarrow \) 444

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {a \sin ^3(e+f x) \sqrt {1-\sin ^2(e+f x)}}{b (a+b) \sqrt {a+b \sin ^2(e+f x)}}-\frac {\frac {\int -\frac {a (4 a+b)-\left (8 a^2+3 b a-2 b^2\right ) \sin ^2(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{3 b}+\frac {(4 a+b) \sqrt {1-\sin ^2(e+f x)} \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 b}}{b (a+b)}\right )}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {a \sin ^3(e+f x) \sqrt {1-\sin ^2(e+f x)}}{b (a+b) \sqrt {a+b \sin ^2(e+f x)}}-\frac {\frac {(4 a+b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}{3 b}-\frac {\int \frac {a (4 a+b)-\left (8 a^2+3 b a-2 b^2\right ) \sin ^2(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{3 b}}{b (a+b)}\right )}{f}\)

\(\Big \downarrow \) 399

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {a \sin ^3(e+f x) \sqrt {1-\sin ^2(e+f x)}}{b (a+b) \sqrt {a+b \sin ^2(e+f x)}}-\frac {\frac {(4 a+b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}{3 b}-\frac {\frac {a (8 a-b) (a+b) \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{b}-\frac {\left (8 a^2+3 a b-2 b^2\right ) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}}{3 b}}{b (a+b)}\right )}{f}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {a \sin ^3(e+f x) \sqrt {1-\sin ^2(e+f x)}}{b (a+b) \sqrt {a+b \sin ^2(e+f x)}}-\frac {\frac {(4 a+b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}{3 b}-\frac {\frac {a (8 a-b) (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}d\sin (e+f x)}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\left (8 a^2+3 a b-2 b^2\right ) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}}{3 b}}{b (a+b)}\right )}{f}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {a \sin ^3(e+f x) \sqrt {1-\sin ^2(e+f x)}}{b (a+b) \sqrt {a+b \sin ^2(e+f x)}}-\frac {\frac {(4 a+b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}{3 b}-\frac {\frac {a (8 a-b) (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\left (8 a^2+3 a b-2 b^2\right ) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}}{3 b}}{b (a+b)}\right )}{f}\)

\(\Big \downarrow \) 330

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {a \sin ^3(e+f x) \sqrt {1-\sin ^2(e+f x)}}{b (a+b) \sqrt {a+b \sin ^2(e+f x)}}-\frac {\frac {(4 a+b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}{3 b}-\frac {\frac {a (8 a-b) (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\left (8 a^2+3 a b-2 b^2\right ) \sqrt {a+b \sin ^2(e+f x)} \int \frac {\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}}{3 b}}{b (a+b)}\right )}{f}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {a \sin ^3(e+f x) \sqrt {1-\sin ^2(e+f x)}}{b (a+b) \sqrt {a+b \sin ^2(e+f x)}}-\frac {\frac {(4 a+b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}{3 b}-\frac {\frac {a (8 a-b) (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\left (8 a^2+3 a b-2 b^2\right ) \sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}}{3 b}}{b (a+b)}\right )}{f}\)

Input:

Int[Sin[e + f*x]^6/(a + b*Sin[e + f*x]^2)^(3/2),x]
 

Output:

(Sqrt[Cos[e + f*x]^2]*Sec[e + f*x]*((a*Sin[e + f*x]^3*Sqrt[1 - Sin[e + f*x 
]^2])/(b*(a + b)*Sqrt[a + b*Sin[e + f*x]^2]) - (((4*a + b)*Sin[e + f*x]*Sq 
rt[1 - Sin[e + f*x]^2]*Sqrt[a + b*Sin[e + f*x]^2])/(3*b) - (-(((8*a^2 + 3* 
a*b - 2*b^2)*EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sqrt[a + b*Sin[e + f* 
x]^2])/(b*Sqrt[1 + (b*Sin[e + f*x]^2)/a])) + (a*(8*a - b)*(a + b)*Elliptic 
F[ArcSin[Sin[e + f*x]], -(b/a)]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(b*Sqrt[a 
+ b*Sin[e + f*x]^2]))/(3*b))/(b*(a + b))))/f
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 372
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-a)*e^3*(e*x)^(m - 3)*(a + b*x^2)^(p + 1)*((c + d*x^2 
)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] + Simp[e^4/(2*b*(b*c - a*d)*(p + 1 
))   Int[(e*x)^(m - 4)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[a*c*(m - 3) + 
 (a*d*(m + 2*q - 1) + 2*b*c*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, 
e, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[m, 3] && IntBinomialQ[a 
, b, c, d, e, m, 2, p, q, x]
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 444
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q 
_.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[f*g*(g*x)^(m - 1)*(a + b*x^2)^ 
(p + 1)*((c + d*x^2)^(q + 1)/(b*d*(m + 2*(p + q + 1) + 1))), x] - Simp[g^2/ 
(b*d*(m + 2*(p + q + 1) + 1))   Int[(g*x)^(m - 2)*(a + b*x^2)^p*(c + d*x^2) 
^q*Simp[a*f*c*(m - 1) + (a*f*d*(m + 2*q + 1) + b*(f*c*(m + 2*p + 1) - e*d*( 
m + 2*(p + q + 1) + 1)))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, 
q}, x] && GtQ[m, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3667
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^( 
p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff^(m + 1 
)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x]))   Subst[Int[x^m*((a + b*ff^2*x^2) 
^p/Sqrt[1 - ff^2*x^2]), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, 
p}, x] && IntegerQ[m/2] &&  !IntegerQ[p]
 
Maple [A] (verified)

Time = 4.30 (sec) , antiderivative size = 405, normalized size of antiderivative = 1.48

method result size
default \(\frac {a \,b^{2} \sin \left (f x +e \right )^{5}+b^{3} \sin \left (f x +e \right )^{5}+8 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \sin \left (f x +e \right )^{2}}{a}}\, \operatorname {EllipticF}\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{3}+7 a^{2} \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \sin \left (f x +e \right )^{2}}{a}}\, \operatorname {EllipticF}\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b -a \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \sin \left (f x +e \right )^{2}}{a}}\, \operatorname {EllipticF}\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b^{2}-8 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \sin \left (f x +e \right )^{2}}{a}}\, \operatorname {EllipticE}\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{3}-3 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \sin \left (f x +e \right )^{2}}{a}}\, \operatorname {EllipticE}\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2} b +2 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \sin \left (f x +e \right )^{2}}{a}}\, \operatorname {EllipticE}\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a \,b^{2}+4 a^{2} b \sin \left (f x +e \right )^{3}-b^{3} \sin \left (f x +e \right )^{3}-4 a^{2} b \sin \left (f x +e \right )-a \,b^{2} \sin \left (f x +e \right )}{3 b^{3} \left (a +b \right ) \cos \left (f x +e \right ) \sqrt {a +b \sin \left (f x +e \right )^{2}}\, f}\) \(405\)

Input:

int(sin(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/3*(a*b^2*sin(f*x+e)^5+b^3*sin(f*x+e)^5+8*(cos(f*x+e)^2)^(1/2)*((a+b*sin( 
f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-b/a)^(1/2))*a^3+7*a^2*(cos(f*x+e 
)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-b/a)^(1/2)) 
*b-a*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e 
),(-b/a)^(1/2))*b^2-8*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*El 
lipticE(sin(f*x+e),(-b/a)^(1/2))*a^3-3*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+ 
e)^2)/a)^(1/2)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*a^2*b+2*(cos(f*x+e)^2)^( 
1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*a*b^2 
+4*a^2*b*sin(f*x+e)^3-b^3*sin(f*x+e)^3-4*a^2*b*sin(f*x+e)-a*b^2*sin(f*x+e) 
)/b^3/(a+b)/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f
 

Fricas [F]

\[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\sin \left (f x + e\right )^{6}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(sin(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")
 

Output:

integral(-(cos(f*x + e)^6 - 3*cos(f*x + e)^4 + 3*cos(f*x + e)^2 - 1)*sqrt( 
-b*cos(f*x + e)^2 + a + b)/(b^2*cos(f*x + e)^4 - 2*(a*b + b^2)*cos(f*x + e 
)^2 + a^2 + 2*a*b + b^2), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(sin(f*x+e)**6/(a+b*sin(f*x+e)**2)**(3/2),x)
 

Output:

Timed out
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\sin \left (f x + e\right )^{6}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(sin(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")
 

Output:

integrate(sin(f*x + e)^6/(b*sin(f*x + e)^2 + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\sin \left (f x + e\right )^{6}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(sin(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")
 

Output:

integrate(sin(f*x + e)^6/(b*sin(f*x + e)^2 + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {{\sin \left (e+f\,x\right )}^6}{{\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{3/2}} \,d x \] Input:

int(sin(e + f*x)^6/(a + b*sin(e + f*x)^2)^(3/2),x)
 

Output:

int(sin(e + f*x)^6/(a + b*sin(e + f*x)^2)^(3/2), x)
 

Reduce [F]

\[ \int \frac {\sin ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\sqrt {\sin \left (f x +e \right )^{2} b +a}\, \sin \left (f x +e \right )^{6}}{\sin \left (f x +e \right )^{4} b^{2}+2 \sin \left (f x +e \right )^{2} a b +a^{2}}d x \] Input:

int(sin(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x)
 

Output:

int((sqrt(sin(e + f*x)**2*b + a)*sin(e + f*x)**6)/(sin(e + f*x)**4*b**2 + 
2*sin(e + f*x)**2*a*b + a**2),x)