\(\int \frac {1}{a-b \sin ^4(c+d x)} \, dx\) [156]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 115 \[ \int \frac {1}{a-b \sin ^4(c+d x)} \, dx=\frac {\arctan \left (\frac {\sqrt {\sqrt {a}-\sqrt {b}} \tan (c+d x)}{\sqrt [4]{a}}\right )}{2 a^{3/4} \sqrt {\sqrt {a}-\sqrt {b}} d}+\frac {\arctan \left (\frac {\sqrt {\sqrt {a}+\sqrt {b}} \tan (c+d x)}{\sqrt [4]{a}}\right )}{2 a^{3/4} \sqrt {\sqrt {a}+\sqrt {b}} d} \] Output:

1/2*arctan((a^(1/2)-b^(1/2))^(1/2)*tan(d*x+c)/a^(1/4))/a^(3/4)/(a^(1/2)-b^ 
(1/2))^(1/2)/d+1/2*arctan((a^(1/2)+b^(1/2))^(1/2)*tan(d*x+c)/a^(1/4))/a^(3 
/4)/(a^(1/2)+b^(1/2))^(1/2)/d
 

Mathematica [A] (verified)

Time = 1.98 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.11 \[ \int \frac {1}{a-b \sin ^4(c+d x)} \, dx=\frac {\frac {\arctan \left (\frac {\left (\sqrt {a}+\sqrt {b}\right ) \tan (c+d x)}{\sqrt {a+\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a+\sqrt {a} \sqrt {b}}}-\frac {\text {arctanh}\left (\frac {\left (\sqrt {a}-\sqrt {b}\right ) \tan (c+d x)}{\sqrt {-a+\sqrt {a} \sqrt {b}}}\right )}{\sqrt {-a+\sqrt {a} \sqrt {b}}}}{2 \sqrt {a} d} \] Input:

Integrate[(a - b*Sin[c + d*x]^4)^(-1),x]
 

Output:

(ArcTan[((Sqrt[a] + Sqrt[b])*Tan[c + d*x])/Sqrt[a + Sqrt[a]*Sqrt[b]]]/Sqrt 
[a + Sqrt[a]*Sqrt[b]] - ArcTanh[((Sqrt[a] - Sqrt[b])*Tan[c + d*x])/Sqrt[-a 
 + Sqrt[a]*Sqrt[b]]]/Sqrt[-a + Sqrt[a]*Sqrt[b]])/(2*Sqrt[a]*d)
 

Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.46, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {3042, 3688, 1480, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{a-b \sin ^4(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{a-b \sin (c+d x)^4}dx\)

\(\Big \downarrow \) 3688

\(\displaystyle \frac {\int \frac {\tan ^2(c+d x)+1}{(a-b) \tan ^4(c+d x)+2 a \tan ^2(c+d x)+a}d\tan (c+d x)}{d}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {\frac {1}{2} \left (1-\frac {\sqrt {b}}{\sqrt {a}}\right ) \int \frac {1}{(a-b) \tan ^2(c+d x)+\sqrt {a} \left (\sqrt {a}-\sqrt {b}\right )}d\tan (c+d x)+\frac {1}{2} \left (\frac {\sqrt {b}}{\sqrt {a}}+1\right ) \int \frac {1}{(a-b) \tan ^2(c+d x)+\sqrt {a} \left (\sqrt {a}+\sqrt {b}\right )}d\tan (c+d x)}{d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\left (\frac {\sqrt {b}}{\sqrt {a}}+1\right ) \arctan \left (\frac {\sqrt {\sqrt {a}-\sqrt {b}} \tan (c+d x)}{\sqrt [4]{a}}\right )}{2 \sqrt [4]{a} \sqrt {\sqrt {a}-\sqrt {b}} \left (\sqrt {a}+\sqrt {b}\right )}+\frac {\left (1-\frac {\sqrt {b}}{\sqrt {a}}\right ) \arctan \left (\frac {\sqrt {\sqrt {a}+\sqrt {b}} \tan (c+d x)}{\sqrt [4]{a}}\right )}{2 \sqrt [4]{a} \left (\sqrt {a}-\sqrt {b}\right ) \sqrt {\sqrt {a}+\sqrt {b}}}}{d}\)

Input:

Int[(a - b*Sin[c + d*x]^4)^(-1),x]
 

Output:

(((1 + Sqrt[b]/Sqrt[a])*ArcTan[(Sqrt[Sqrt[a] - Sqrt[b]]*Tan[c + d*x])/a^(1 
/4)])/(2*a^(1/4)*Sqrt[Sqrt[a] - Sqrt[b]]*(Sqrt[a] + Sqrt[b])) + ((1 - Sqrt 
[b]/Sqrt[a])*ArcTan[(Sqrt[Sqrt[a] + Sqrt[b]]*Tan[c + d*x])/a^(1/4)])/(2*a^ 
(1/4)*(Sqrt[a] - Sqrt[b])*Sqrt[Sqrt[a] + Sqrt[b]]))/d
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3688
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^(p_.), x_Symbol] :> With[{ff = 
 FreeFactors[Tan[e + f*x], x]}, Simp[ff/f   Subst[Int[(a + 2*a*ff^2*x^2 + ( 
a + b)*ff^4*x^4)^p/(1 + ff^2*x^2)^(2*p + 1), x], x, Tan[e + f*x]/ff], x]] / 
; FreeQ[{a, b, e, f}, x] && IntegerQ[p]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.58 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.11

method result size
risch \(\munderset {\textit {\_R} =\operatorname {RootOf}\left (1+\left (256 a^{4} d^{4}-256 a^{3} b \,d^{4}\right ) \textit {\_Z}^{4}+32 a^{2} d^{2} \textit {\_Z}^{2}\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+\left (\frac {128 i d^{3} a^{4}}{b}-128 i a^{3} d^{3}\right ) \textit {\_R}^{3}+\left (-\frac {32 d^{2} a^{3}}{b}+32 a^{2} d^{2}\right ) \textit {\_R}^{2}+\left (\frac {8 i a^{2} d}{b}+8 i a d \right ) \textit {\_R} -\frac {2 a}{b}-1\right )\) \(128\)
derivativedivides \(\frac {\left (a -b \right ) \left (\frac {\left (\sqrt {a b}+b \right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (d x +c \right )}{\sqrt {\left (\sqrt {a b}+a \right ) \left (a -b \right )}}\right )}{2 \sqrt {a b}\, \left (a -b \right ) \sqrt {\left (\sqrt {a b}+a \right ) \left (a -b \right )}}+\frac {\left (\sqrt {a b}-b \right ) \operatorname {arctanh}\left (\frac {\left (-a +b \right ) \tan \left (d x +c \right )}{\sqrt {\left (\sqrt {a b}-a \right ) \left (a -b \right )}}\right )}{2 \sqrt {a b}\, \left (a -b \right ) \sqrt {\left (\sqrt {a b}-a \right ) \left (a -b \right )}}\right )}{d}\) \(145\)
default \(\frac {\left (a -b \right ) \left (\frac {\left (\sqrt {a b}+b \right ) \arctan \left (\frac {\left (a -b \right ) \tan \left (d x +c \right )}{\sqrt {\left (\sqrt {a b}+a \right ) \left (a -b \right )}}\right )}{2 \sqrt {a b}\, \left (a -b \right ) \sqrt {\left (\sqrt {a b}+a \right ) \left (a -b \right )}}+\frac {\left (\sqrt {a b}-b \right ) \operatorname {arctanh}\left (\frac {\left (-a +b \right ) \tan \left (d x +c \right )}{\sqrt {\left (\sqrt {a b}-a \right ) \left (a -b \right )}}\right )}{2 \sqrt {a b}\, \left (a -b \right ) \sqrt {\left (\sqrt {a b}-a \right ) \left (a -b \right )}}\right )}{d}\) \(145\)

Input:

int(1/(a-b*sin(d*x+c)^4),x,method=_RETURNVERBOSE)
 

Output:

sum(_R*ln(exp(2*I*(d*x+c))+(128*I/b*d^3*a^4-128*I*a^3*d^3)*_R^3+(-32/b*d^2 
*a^3+32*a^2*d^2)*_R^2+(8*I/b*a^2*d+8*I*a*d)*_R-2/b*a-1),_R=RootOf(1+(256*a 
^4*d^4-256*a^3*b*d^4)*_Z^4+32*a^2*d^2*_Z^2))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1079 vs. \(2 (79) = 158\).

Time = 0.19 (sec) , antiderivative size = 1079, normalized size of antiderivative = 9.38 \[ \int \frac {1}{a-b \sin ^4(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate(1/(a-b*sin(d*x+c)^4),x, algorithm="fricas")
 

Output:

1/8*sqrt(-((a^2 - a*b)*d^2*sqrt(b/((a^5 - 2*a^4*b + a^3*b^2)*d^4)) + 1)/(( 
a^2 - a*b)*d^2))*log(1/4*b*cos(d*x + c)^2 + 1/2*((a^4 - a^3*b)*d^3*sqrt(b/ 
((a^5 - 2*a^4*b + a^3*b^2)*d^4))*cos(d*x + c)*sin(d*x + c) - a*b*d*cos(d*x 
 + c)*sin(d*x + c))*sqrt(-((a^2 - a*b)*d^2*sqrt(b/((a^5 - 2*a^4*b + a^3*b^ 
2)*d^4)) + 1)/((a^2 - a*b)*d^2)) - 1/4*(2*(a^3 - a^2*b)*d^2*cos(d*x + c)^2 
 - (a^3 - a^2*b)*d^2)*sqrt(b/((a^5 - 2*a^4*b + a^3*b^2)*d^4)) - 1/4*b) - 1 
/8*sqrt(-((a^2 - a*b)*d^2*sqrt(b/((a^5 - 2*a^4*b + a^3*b^2)*d^4)) + 1)/((a 
^2 - a*b)*d^2))*log(1/4*b*cos(d*x + c)^2 - 1/2*((a^4 - a^3*b)*d^3*sqrt(b/( 
(a^5 - 2*a^4*b + a^3*b^2)*d^4))*cos(d*x + c)*sin(d*x + c) - a*b*d*cos(d*x 
+ c)*sin(d*x + c))*sqrt(-((a^2 - a*b)*d^2*sqrt(b/((a^5 - 2*a^4*b + a^3*b^2 
)*d^4)) + 1)/((a^2 - a*b)*d^2)) - 1/4*(2*(a^3 - a^2*b)*d^2*cos(d*x + c)^2 
- (a^3 - a^2*b)*d^2)*sqrt(b/((a^5 - 2*a^4*b + a^3*b^2)*d^4)) - 1/4*b) + 1/ 
8*sqrt(((a^2 - a*b)*d^2*sqrt(b/((a^5 - 2*a^4*b + a^3*b^2)*d^4)) - 1)/((a^2 
 - a*b)*d^2))*log(-1/4*b*cos(d*x + c)^2 + 1/2*((a^4 - a^3*b)*d^3*sqrt(b/(( 
a^5 - 2*a^4*b + a^3*b^2)*d^4))*cos(d*x + c)*sin(d*x + c) + a*b*d*cos(d*x + 
 c)*sin(d*x + c))*sqrt(((a^2 - a*b)*d^2*sqrt(b/((a^5 - 2*a^4*b + a^3*b^2)* 
d^4)) - 1)/((a^2 - a*b)*d^2)) - 1/4*(2*(a^3 - a^2*b)*d^2*cos(d*x + c)^2 - 
(a^3 - a^2*b)*d^2)*sqrt(b/((a^5 - 2*a^4*b + a^3*b^2)*d^4)) + 1/4*b) - 1/8* 
sqrt(((a^2 - a*b)*d^2*sqrt(b/((a^5 - 2*a^4*b + a^3*b^2)*d^4)) - 1)/((a^2 - 
 a*b)*d^2))*log(-1/4*b*cos(d*x + c)^2 - 1/2*((a^4 - a^3*b)*d^3*sqrt(b/(...
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{a-b \sin ^4(c+d x)} \, dx=\text {Timed out} \] Input:

integrate(1/(a-b*sin(d*x+c)**4),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {1}{a-b \sin ^4(c+d x)} \, dx=\int { -\frac {1}{b \sin \left (d x + c\right )^{4} - a} \,d x } \] Input:

integrate(1/(a-b*sin(d*x+c)^4),x, algorithm="maxima")
 

Output:

-integrate(1/(b*sin(d*x + c)^4 - a), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 361 vs. \(2 (79) = 158\).

Time = 0.52 (sec) , antiderivative size = 361, normalized size of antiderivative = 3.14 \[ \int \frac {1}{a-b \sin ^4(c+d x)} \, dx=\frac {\frac {{\left (3 \, \sqrt {a^{2} - a b + \sqrt {a b} {\left (a - b\right )}} a^{2} - 6 \, \sqrt {a^{2} - a b + \sqrt {a b} {\left (a - b\right )}} a b - \sqrt {a^{2} - a b + \sqrt {a b} {\left (a - b\right )}} b^{2}\right )} {\left (\pi \left \lfloor \frac {d x + c}{\pi } + \frac {1}{2} \right \rfloor + \arctan \left (\frac {2 \, \tan \left (d x + c\right )}{\sqrt {\frac {4 \, a + \sqrt {-16 \, {\left (a - b\right )} a + 16 \, a^{2}}}{a - b}}}\right )\right )} {\left | a - b \right |}}{3 \, a^{5} - 12 \, a^{4} b + 14 \, a^{3} b^{2} - 4 \, a^{2} b^{3} - a b^{4}} + \frac {{\left (3 \, \sqrt {a^{2} - a b - \sqrt {a b} {\left (a - b\right )}} a^{2} - 6 \, \sqrt {a^{2} - a b - \sqrt {a b} {\left (a - b\right )}} a b - \sqrt {a^{2} - a b - \sqrt {a b} {\left (a - b\right )}} b^{2}\right )} {\left (\pi \left \lfloor \frac {d x + c}{\pi } + \frac {1}{2} \right \rfloor + \arctan \left (\frac {2 \, \tan \left (d x + c\right )}{\sqrt {\frac {4 \, a - \sqrt {-16 \, {\left (a - b\right )} a + 16 \, a^{2}}}{a - b}}}\right )\right )} {\left | a - b \right |}}{3 \, a^{5} - 12 \, a^{4} b + 14 \, a^{3} b^{2} - 4 \, a^{2} b^{3} - a b^{4}}}{2 \, d} \] Input:

integrate(1/(a-b*sin(d*x+c)^4),x, algorithm="giac")
 

Output:

1/2*((3*sqrt(a^2 - a*b + sqrt(a*b)*(a - b))*a^2 - 6*sqrt(a^2 - a*b + sqrt( 
a*b)*(a - b))*a*b - sqrt(a^2 - a*b + sqrt(a*b)*(a - b))*b^2)*(pi*floor((d* 
x + c)/pi + 1/2) + arctan(2*tan(d*x + c)/sqrt((4*a + sqrt(-16*(a - b)*a + 
16*a^2))/(a - b))))*abs(a - b)/(3*a^5 - 12*a^4*b + 14*a^3*b^2 - 4*a^2*b^3 
- a*b^4) + (3*sqrt(a^2 - a*b - sqrt(a*b)*(a - b))*a^2 - 6*sqrt(a^2 - a*b - 
 sqrt(a*b)*(a - b))*a*b - sqrt(a^2 - a*b - sqrt(a*b)*(a - b))*b^2)*(pi*flo 
or((d*x + c)/pi + 1/2) + arctan(2*tan(d*x + c)/sqrt((4*a - sqrt(-16*(a - b 
)*a + 16*a^2))/(a - b))))*abs(a - b)/(3*a^5 - 12*a^4*b + 14*a^3*b^2 - 4*a^ 
2*b^3 - a*b^4))/d
 

Mupad [B] (verification not implemented)

Time = 37.40 (sec) , antiderivative size = 671, normalized size of antiderivative = 5.83 \[ \int \frac {1}{a-b \sin ^4(c+d x)} \, dx =\text {Too large to display} \] Input:

int(1/(a - b*sin(c + d*x)^4),x)
 

Output:

(atan((a^3*tan(c + d*x)*(-1/(16*a^2 + 16*(a^3*b)^(1/2)))^(1/2)*4i + a^5*ta 
n(c + d*x)*(-1/(16*a^2 + 16*(a^3*b)^(1/2)))^(3/2)*64i + a^3*tan(c + d*x)*( 
-1/(16*a^2 + 16*(a^3*b)^(1/2)))^(3/2)*(a^3*b)^(1/2)*64i + a^2*b*tan(c + d* 
x)*(-1/(16*a^2 + 16*(a^3*b)^(1/2)))^(1/2)*4i - a^4*b*tan(c + d*x)*(-1/(16* 
a^2 + 16*(a^3*b)^(1/2)))^(3/2)*64i + a*tan(c + d*x)*(-1/(16*a^2 + 16*(a^3* 
b)^(1/2)))^(1/2)*(a^3*b)^(1/2)*4i + b*tan(c + d*x)*(-1/(16*a^2 + 16*(a^3*b 
)^(1/2)))^(1/2)*(a^3*b)^(1/2)*4i - a^2*b*tan(c + d*x)*(-1/(16*a^2 + 16*(a^ 
3*b)^(1/2)))^(3/2)*(a^3*b)^(1/2)*64i)/(a*b + (a^3*b)^(1/2)))*(-1/(16*a^2 + 
 16*(a^3*b)^(1/2)))^(1/2)*2i)/d + (atan((a^3*tan(c + d*x)*(-1/(16*a^2 - 16 
*(a^3*b)^(1/2)))^(1/2)*4i + a^5*tan(c + d*x)*(-1/(16*a^2 - 16*(a^3*b)^(1/2 
)))^(3/2)*64i - a^3*tan(c + d*x)*(-1/(16*a^2 - 16*(a^3*b)^(1/2)))^(3/2)*(a 
^3*b)^(1/2)*64i + a^2*b*tan(c + d*x)*(-1/(16*a^2 - 16*(a^3*b)^(1/2)))^(1/2 
)*4i - a^4*b*tan(c + d*x)*(-1/(16*a^2 - 16*(a^3*b)^(1/2)))^(3/2)*64i - a*t 
an(c + d*x)*(-1/(16*a^2 - 16*(a^3*b)^(1/2)))^(1/2)*(a^3*b)^(1/2)*4i - b*ta 
n(c + d*x)*(-1/(16*a^2 - 16*(a^3*b)^(1/2)))^(1/2)*(a^3*b)^(1/2)*4i + a^2*b 
*tan(c + d*x)*(-1/(16*a^2 - 16*(a^3*b)^(1/2)))^(3/2)*(a^3*b)^(1/2)*64i)/(a 
*b - (a^3*b)^(1/2)))*(-1/(16*a^2 - 16*(a^3*b)^(1/2)))^(1/2)*2i)/d
 

Reduce [F]

\[ \int \frac {1}{a-b \sin ^4(c+d x)} \, dx=-\left (\int \frac {1}{\sin \left (d x +c \right )^{4} b -a}d x \right ) \] Input:

int(1/(a-b*sin(d*x+c)^4),x)
 

Output:

 - int(1/(sin(c + d*x)**4*b - a),x)