\(\int \frac {\sin ^5(c+d x)}{(a-b \sin ^4(c+d x))^3} \, dx\) [175]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 313 \[ \int \frac {\sin ^5(c+d x)}{\left (a-b \sin ^4(c+d x)\right )^3} \, dx=\frac {\left (3 a-10 \sqrt {a} \sqrt {b}+4 b\right ) \arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{64 a^{3/2} \left (\sqrt {a}-\sqrt {b}\right )^{5/2} b^{5/4} d}+\frac {\left (3 a+10 \sqrt {a} \sqrt {b}+4 b\right ) \text {arctanh}\left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{64 a^{3/2} \left (\sqrt {a}+\sqrt {b}\right )^{5/2} b^{5/4} d}-\frac {\cos (c+d x) \left (a+b-b \cos ^2(c+d x)\right )}{8 (a-b) b d \left (a-b+2 b \cos ^2(c+d x)-b \cos ^4(c+d x)\right )^2}+\frac {\cos (c+d x) \left (a^2-11 a b-2 b^2+2 b (2 a+b) \cos ^2(c+d x)\right )}{32 a (a-b)^2 b d \left (a-b+2 b \cos ^2(c+d x)-b \cos ^4(c+d x)\right )} \] Output:

1/64*(3*a-10*a^(1/2)*b^(1/2)+4*b)*arctan(b^(1/4)*cos(d*x+c)/(a^(1/2)-b^(1/ 
2))^(1/2))/a^(3/2)/(a^(1/2)-b^(1/2))^(5/2)/b^(5/4)/d+1/64*(3*a+10*a^(1/2)* 
b^(1/2)+4*b)*arctanh(b^(1/4)*cos(d*x+c)/(a^(1/2)+b^(1/2))^(1/2))/a^(3/2)/( 
a^(1/2)+b^(1/2))^(5/2)/b^(5/4)/d-1/8*cos(d*x+c)*(a+b-b*cos(d*x+c)^2)/(a-b) 
/b/d/(a-b+2*b*cos(d*x+c)^2-b*cos(d*x+c)^4)^2+1/32*cos(d*x+c)*(a^2-11*a*b-2 
*b^2+2*b*(2*a+b)*cos(d*x+c)^2)/a/(a-b)^2/b/d/(a-b+2*b*cos(d*x+c)^2-b*cos(d 
*x+c)^4)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 7.39 (sec) , antiderivative size = 786, normalized size of antiderivative = 2.51 \[ \int \frac {\sin ^5(c+d x)}{\left (a-b \sin ^4(c+d x)\right )^3} \, dx =\text {Too large to display} \] Input:

Integrate[Sin[c + d*x]^5/(a - b*Sin[c + d*x]^4)^3,x]
 

Output:

((32*Cos[c + d*x]*(a^2 - 9*a*b - b^2 + b*(2*a + b)*Cos[2*(c + d*x)]))/(a*( 
8*a - 3*b + 4*b*Cos[2*(c + d*x)] - b*Cos[4*(c + d*x)])) - (512*(a - b)*Cos 
[c + d*x]*(2*a + b - b*Cos[2*(c + d*x)]))/(-8*a + 3*b - 4*b*Cos[2*(c + d*x 
)] + b*Cos[4*(c + d*x)])^2 + (I*RootSum[b - 4*b*#1^2 - 16*a*#1^4 + 6*b*#1^ 
4 - 4*b*#1^6 + b*#1^8 & , (4*a*b*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)] 
+ 2*b^2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)] - (2*I)*a*b*Log[1 - 2*Cos 
[c + d*x]*#1 + #1^2] - I*b^2*Log[1 - 2*Cos[c + d*x]*#1 + #1^2] + 12*a^2*Ar 
cTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^2 - 64*a*b*ArcTan[Sin[c + d*x]/( 
Cos[c + d*x] - #1)]*#1^2 + 10*b^2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)] 
*#1^2 - (6*I)*a^2*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^2 + (32*I)*a*b*Log[ 
1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^2 - (5*I)*b^2*Log[1 - 2*Cos[c + d*x]*#1 + 
 #1^2]*#1^2 - 12*a^2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^4 + 64*a* 
b*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^4 - 10*b^2*ArcTan[Sin[c + d* 
x]/(Cos[c + d*x] - #1)]*#1^4 + (6*I)*a^2*Log[1 - 2*Cos[c + d*x]*#1 + #1^2] 
*#1^4 - (32*I)*a*b*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^4 + (5*I)*b^2*Log[ 
1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^4 - 4*a*b*ArcTan[Sin[c + d*x]/(Cos[c + d* 
x] - #1)]*#1^6 - 2*b^2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^6 + (2* 
I)*a*b*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^6 + I*b^2*Log[1 - 2*Cos[c + d* 
x]*#1 + #1^2]*#1^6)/(-(b*#1) - 8*a*#1^3 + 3*b*#1^3 - 3*b*#1^5 + b*#1^7) & 
])/a)/(128*(a - b)^2*b*d)
 

Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 361, normalized size of antiderivative = 1.15, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {3042, 3694, 1517, 27, 1492, 27, 1480, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^5(c+d x)}{\left (a-b \sin ^4(c+d x)\right )^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)^5}{\left (a-b \sin (c+d x)^4\right )^3}dx\)

\(\Big \downarrow \) 3694

\(\displaystyle -\frac {\int \frac {\left (1-\cos ^2(c+d x)\right )^2}{\left (-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)+a-b\right )^3}d\cos (c+d x)}{d}\)

\(\Big \downarrow \) 1517

\(\displaystyle -\frac {\frac {\cos (c+d x) \left (a-b \cos ^2(c+d x)+b\right )}{8 b (a-b) \left (a-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)-b\right )^2}-\frac {\int \frac {2 a \left (5 b \cos ^2(c+d x)+a-7 b\right )}{\left (-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)+a-b\right )^2}d\cos (c+d x)}{16 a b (a-b)}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\cos (c+d x) \left (a-b \cos ^2(c+d x)+b\right )}{8 b (a-b) \left (a-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)-b\right )^2}-\frac {\int \frac {5 b \cos ^2(c+d x)+a-7 b}{\left (-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)+a-b\right )^2}d\cos (c+d x)}{8 b (a-b)}}{d}\)

\(\Big \downarrow \) 1492

\(\displaystyle -\frac {\frac {\cos (c+d x) \left (a-b \cos ^2(c+d x)+b\right )}{8 b (a-b) \left (a-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)-b\right )^2}-\frac {\frac {\cos (c+d x) \left (a^2+2 b (2 a+b) \cos ^2(c+d x)-11 a b-2 b^2\right )}{4 a (a-b) \left (a-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)-b\right )}-\frac {\int -\frac {2 b \left (3 a^2-17 b a+2 b^2+2 b (2 a+b) \cos ^2(c+d x)\right )}{-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)+a-b}d\cos (c+d x)}{8 a b (a-b)}}{8 b (a-b)}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\cos (c+d x) \left (a-b \cos ^2(c+d x)+b\right )}{8 b (a-b) \left (a-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)-b\right )^2}-\frac {\frac {\int \frac {3 a^2-17 b a+2 b^2+2 b (2 a+b) \cos ^2(c+d x)}{-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)+a-b}d\cos (c+d x)}{4 a (a-b)}+\frac {\cos (c+d x) \left (a^2+2 b (2 a+b) \cos ^2(c+d x)-11 a b-2 b^2\right )}{4 a (a-b) \left (a-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)-b\right )}}{8 b (a-b)}}{d}\)

\(\Big \downarrow \) 1480

\(\displaystyle -\frac {\frac {\cos (c+d x) \left (a-b \cos ^2(c+d x)+b\right )}{8 b (a-b) \left (a-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)-b\right )^2}-\frac {\frac {\frac {\sqrt {b} \left (-2 \sqrt {a} \sqrt {b}+a+b\right ) \left (10 \sqrt {a} \sqrt {b}+3 a+4 b\right ) \int \frac {1}{\left (\sqrt {a}+\sqrt {b}\right ) \sqrt {b}-b \cos ^2(c+d x)}d\cos (c+d x)}{2 \sqrt {a}}-\frac {\sqrt {b} \left (\sqrt {a}+\sqrt {b}\right )^2 \left (-10 \sqrt {a} \sqrt {b}+3 a+4 b\right ) \int \frac {1}{-b \cos ^2(c+d x)-\left (\sqrt {a}-\sqrt {b}\right ) \sqrt {b}}d\cos (c+d x)}{2 \sqrt {a}}}{4 a (a-b)}+\frac {\cos (c+d x) \left (a^2+2 b (2 a+b) \cos ^2(c+d x)-11 a b-2 b^2\right )}{4 a (a-b) \left (a-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)-b\right )}}{8 b (a-b)}}{d}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {\frac {\cos (c+d x) \left (a-b \cos ^2(c+d x)+b\right )}{8 b (a-b) \left (a-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)-b\right )^2}-\frac {\frac {\frac {\sqrt {b} \left (-2 \sqrt {a} \sqrt {b}+a+b\right ) \left (10 \sqrt {a} \sqrt {b}+3 a+4 b\right ) \int \frac {1}{\left (\sqrt {a}+\sqrt {b}\right ) \sqrt {b}-b \cos ^2(c+d x)}d\cos (c+d x)}{2 \sqrt {a}}+\frac {\left (-10 \sqrt {a} \sqrt {b}+3 a+4 b\right ) \left (\sqrt {a}+\sqrt {b}\right )^2 \arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 \sqrt {a} \sqrt [4]{b} \sqrt {\sqrt {a}-\sqrt {b}}}}{4 a (a-b)}+\frac {\cos (c+d x) \left (a^2+2 b (2 a+b) \cos ^2(c+d x)-11 a b-2 b^2\right )}{4 a (a-b) \left (a-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)-b\right )}}{8 b (a-b)}}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {\frac {\cos (c+d x) \left (a-b \cos ^2(c+d x)+b\right )}{8 b (a-b) \left (a-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)-b\right )^2}-\frac {\frac {\cos (c+d x) \left (a^2+2 b (2 a+b) \cos ^2(c+d x)-11 a b-2 b^2\right )}{4 a (a-b) \left (a-b \cos ^4(c+d x)+2 b \cos ^2(c+d x)-b\right )}+\frac {\frac {\left (-10 \sqrt {a} \sqrt {b}+3 a+4 b\right ) \left (\sqrt {a}+\sqrt {b}\right )^2 \arctan \left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 \sqrt {a} \sqrt [4]{b} \sqrt {\sqrt {a}-\sqrt {b}}}+\frac {\left (-2 \sqrt {a} \sqrt {b}+a+b\right ) \left (10 \sqrt {a} \sqrt {b}+3 a+4 b\right ) \text {arctanh}\left (\frac {\sqrt [4]{b} \cos (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{2 \sqrt {a} \sqrt [4]{b} \sqrt {\sqrt {a}+\sqrt {b}}}}{4 a (a-b)}}{8 b (a-b)}}{d}\)

Input:

Int[Sin[c + d*x]^5/(a - b*Sin[c + d*x]^4)^3,x]
 

Output:

-(((Cos[c + d*x]*(a + b - b*Cos[c + d*x]^2))/(8*(a - b)*b*(a - b + 2*b*Cos 
[c + d*x]^2 - b*Cos[c + d*x]^4)^2) - ((((Sqrt[a] + Sqrt[b])^2*(3*a - 10*Sq 
rt[a]*Sqrt[b] + 4*b)*ArcTan[(b^(1/4)*Cos[c + d*x])/Sqrt[Sqrt[a] - Sqrt[b]] 
])/(2*Sqrt[a]*Sqrt[Sqrt[a] - Sqrt[b]]*b^(1/4)) + ((a - 2*Sqrt[a]*Sqrt[b] + 
 b)*(3*a + 10*Sqrt[a]*Sqrt[b] + 4*b)*ArcTanh[(b^(1/4)*Cos[c + d*x])/Sqrt[S 
qrt[a] + Sqrt[b]]])/(2*Sqrt[a]*Sqrt[Sqrt[a] + Sqrt[b]]*b^(1/4)))/(4*a*(a - 
 b)) + (Cos[c + d*x]*(a^2 - 11*a*b - 2*b^2 + 2*b*(2*a + b)*Cos[c + d*x]^2) 
)/(4*a*(a - b)*(a - b + 2*b*Cos[c + d*x]^2 - b*Cos[c + d*x]^4)))/(8*(a - b 
)*b))/d)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1492
Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symb 
ol] :> Simp[x*(a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2)*((a + b*x^2 + 
 c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 
 - 4*a*c))   Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 
7)*(d*b - 2*a*e)*c*x^2, x]*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, 
 b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && 
 LtQ[p, -1] && IntegerQ[2*p]
 

rule 1517
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x 
_Symbol] :> With[{f = Coeff[PolynomialRemainder[(d + e*x^2)^q, a + b*x^2 + 
c*x^4, x], x, 0], g = Coeff[PolynomialRemainder[(d + e*x^2)^q, a + b*x^2 + 
c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 + c*x^4)^(p + 1)*((a*b*g - f*(b^2 - 2* 
a*c) - c*(b*f - 2*a*g)*x^2)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a* 
(p + 1)*(b^2 - 4*a*c))   Int[(a + b*x^2 + c*x^4)^(p + 1)*ExpandToSum[2*a*(p 
 + 1)*(b^2 - 4*a*c)*PolynomialQuotient[(d + e*x^2)^q, a + b*x^2 + c*x^4, x] 
 + b^2*f*(2*p + 3) - 2*a*c*f*(4*p + 5) - a*b*g + c*(4*p + 7)*(b*f - 2*a*g)* 
x^2, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ 
[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[q, 1] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3694
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[-ff/f 
Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - 2*b*ff^2*x^2 + b*ff^4*x^4)^p, 
 x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 
 1)/2]
 
Maple [A] (verified)

Time = 6.57 (sec) , antiderivative size = 347, normalized size of antiderivative = 1.11

method result size
derivativedivides \(\frac {-\frac {\frac {b \left (2 a +b \right ) \cos \left (d x +c \right )^{7}}{16 a \left (a^{2}-2 a b +b^{2}\right )}+\frac {\left (a^{2}-19 a b -6 b^{2}\right ) \cos \left (d x +c \right )^{5}}{32 a \left (a^{2}-2 a b +b^{2}\right )}-\frac {\left (5 a^{2}-14 a b -3 b^{2}\right ) \cos \left (d x +c \right )^{3}}{16 a \left (a^{2}-2 a b +b^{2}\right )}+\frac {\left (3 a^{2}+15 a b +2 b^{2}\right ) \cos \left (d x +c \right )}{32 \left (a -b \right ) a b}}{\left (a -b +2 b \cos \left (d x +c \right )^{2}-b \cos \left (d x +c \right )^{4}\right )^{2}}-\frac {\frac {\left (4 a \sqrt {a b}+2 \sqrt {a b}\, b -3 a^{2}+13 a b -4 b^{2}\right ) \arctan \left (\frac {b \cos \left (d x +c \right )}{\sqrt {\left (\sqrt {a b}-b \right ) b}}\right )}{2 \sqrt {a b}\, \sqrt {\left (\sqrt {a b}-b \right ) b}}-\frac {\left (4 a \sqrt {a b}+2 \sqrt {a b}\, b +3 a^{2}-13 a b +4 b^{2}\right ) \operatorname {arctanh}\left (\frac {b \cos \left (d x +c \right )}{\sqrt {\left (\sqrt {a b}+b \right ) b}}\right )}{2 \sqrt {a b}\, \sqrt {\left (\sqrt {a b}+b \right ) b}}}{32 a \left (a^{2}-2 a b +b^{2}\right )}}{d}\) \(347\)
default \(\frac {-\frac {\frac {b \left (2 a +b \right ) \cos \left (d x +c \right )^{7}}{16 a \left (a^{2}-2 a b +b^{2}\right )}+\frac {\left (a^{2}-19 a b -6 b^{2}\right ) \cos \left (d x +c \right )^{5}}{32 a \left (a^{2}-2 a b +b^{2}\right )}-\frac {\left (5 a^{2}-14 a b -3 b^{2}\right ) \cos \left (d x +c \right )^{3}}{16 a \left (a^{2}-2 a b +b^{2}\right )}+\frac {\left (3 a^{2}+15 a b +2 b^{2}\right ) \cos \left (d x +c \right )}{32 \left (a -b \right ) a b}}{\left (a -b +2 b \cos \left (d x +c \right )^{2}-b \cos \left (d x +c \right )^{4}\right )^{2}}-\frac {\frac {\left (4 a \sqrt {a b}+2 \sqrt {a b}\, b -3 a^{2}+13 a b -4 b^{2}\right ) \arctan \left (\frac {b \cos \left (d x +c \right )}{\sqrt {\left (\sqrt {a b}-b \right ) b}}\right )}{2 \sqrt {a b}\, \sqrt {\left (\sqrt {a b}-b \right ) b}}-\frac {\left (4 a \sqrt {a b}+2 \sqrt {a b}\, b +3 a^{2}-13 a b +4 b^{2}\right ) \operatorname {arctanh}\left (\frac {b \cos \left (d x +c \right )}{\sqrt {\left (\sqrt {a b}+b \right ) b}}\right )}{2 \sqrt {a b}\, \sqrt {\left (\sqrt {a b}+b \right ) b}}}{32 a \left (a^{2}-2 a b +b^{2}\right )}}{d}\) \(347\)
risch \(\text {Expression too large to display}\) \(1459\)

Input:

int(sin(d*x+c)^5/(a-b*sin(d*x+c)^4)^3,x,method=_RETURNVERBOSE)
 

Output:

1/d*(-(1/16*b*(2*a+b)/a/(a^2-2*a*b+b^2)*cos(d*x+c)^7+1/32*(a^2-19*a*b-6*b^ 
2)/a/(a^2-2*a*b+b^2)*cos(d*x+c)^5-1/16*(5*a^2-14*a*b-3*b^2)/a/(a^2-2*a*b+b 
^2)*cos(d*x+c)^3+1/32*(3*a^2+15*a*b+2*b^2)/(a-b)/a/b*cos(d*x+c))/(a-b+2*b* 
cos(d*x+c)^2-b*cos(d*x+c)^4)^2-1/32/a/(a^2-2*a*b+b^2)*(1/2*(4*a*(a*b)^(1/2 
)+2*(a*b)^(1/2)*b-3*a^2+13*a*b-4*b^2)/(a*b)^(1/2)/(((a*b)^(1/2)-b)*b)^(1/2 
)*arctan(b*cos(d*x+c)/(((a*b)^(1/2)-b)*b)^(1/2))-1/2*(4*a*(a*b)^(1/2)+2*(a 
*b)^(1/2)*b+3*a^2-13*a*b+4*b^2)/(a*b)^(1/2)/(((a*b)^(1/2)+b)*b)^(1/2)*arct 
anh(b*cos(d*x+c)/(((a*b)^(1/2)+b)*b)^(1/2))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4524 vs. \(2 (262) = 524\).

Time = 0.72 (sec) , antiderivative size = 4524, normalized size of antiderivative = 14.45 \[ \int \frac {\sin ^5(c+d x)}{\left (a-b \sin ^4(c+d x)\right )^3} \, dx=\text {Too large to display} \] Input:

integrate(sin(d*x+c)^5/(a-b*sin(d*x+c)^4)^3,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sin ^5(c+d x)}{\left (a-b \sin ^4(c+d x)\right )^3} \, dx=\text {Timed out} \] Input:

integrate(sin(d*x+c)**5/(a-b*sin(d*x+c)**4)**3,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\sin ^5(c+d x)}{\left (a-b \sin ^4(c+d x)\right )^3} \, dx=\int { -\frac {\sin \left (d x + c\right )^{5}}{{\left (b \sin \left (d x + c\right )^{4} - a\right )}^{3}} \,d x } \] Input:

integrate(sin(d*x+c)^5/(a-b*sin(d*x+c)^4)^3,x, algorithm="maxima")
 

Output:

1/8*(8*(2*a*b^4 + b^5)*cos(2*d*x + 2*c)*cos(d*x + c) + 8*(2*a^2*b^3 - 24*a 
*b^4 - 5*b^5)*sin(3*d*x + 3*c)*sin(2*d*x + 2*c) + 8*(2*a*b^4 + b^5)*sin(2* 
d*x + 2*c)*sin(d*x + c) - ((2*a*b^4 + b^5)*cos(15*d*x + 15*c) + (2*a^2*b^3 
 - 24*a*b^4 - 5*b^5)*cos(13*d*x + 13*c) - (70*a^2*b^3 - 76*a*b^4 - 9*b^5)* 
cos(11*d*x + 11*c) + (96*a^3*b^2 + 164*a^2*b^3 - 54*a*b^4 - 5*b^5)*cos(9*d 
*x + 9*c) + (96*a^3*b^2 + 164*a^2*b^3 - 54*a*b^4 - 5*b^5)*cos(7*d*x + 7*c) 
 - (70*a^2*b^3 - 76*a*b^4 - 9*b^5)*cos(5*d*x + 5*c) + (2*a^2*b^3 - 24*a*b^ 
4 - 5*b^5)*cos(3*d*x + 3*c) + (2*a*b^4 + b^5)*cos(d*x + c))*cos(16*d*x + 1 
6*c) - (2*a*b^4 + b^5 - 8*(2*a*b^4 + b^5)*cos(14*d*x + 14*c) - 4*(16*a^2*b 
^3 - 6*a*b^4 - 7*b^5)*cos(12*d*x + 12*c) + 8*(32*a^2*b^3 + 2*a*b^4 - 7*b^5 
)*cos(10*d*x + 10*c) + 2*(256*a^3*b^2 - 64*a^2*b^3 - 26*a*b^4 + 35*b^5)*co 
s(8*d*x + 8*c) + 8*(32*a^2*b^3 + 2*a*b^4 - 7*b^5)*cos(6*d*x + 6*c) - 4*(16 
*a^2*b^3 - 6*a*b^4 - 7*b^5)*cos(4*d*x + 4*c) - 8*(2*a*b^4 + b^5)*cos(2*d*x 
 + 2*c))*cos(15*d*x + 15*c) + 8*((2*a^2*b^3 - 24*a*b^4 - 5*b^5)*cos(13*d*x 
 + 13*c) - (70*a^2*b^3 - 76*a*b^4 - 9*b^5)*cos(11*d*x + 11*c) + (96*a^3*b^ 
2 + 164*a^2*b^3 - 54*a*b^4 - 5*b^5)*cos(9*d*x + 9*c) + (96*a^3*b^2 + 164*a 
^2*b^3 - 54*a*b^4 - 5*b^5)*cos(7*d*x + 7*c) - (70*a^2*b^3 - 76*a*b^4 - 9*b 
^5)*cos(5*d*x + 5*c) + (2*a^2*b^3 - 24*a*b^4 - 5*b^5)*cos(3*d*x + 3*c) + ( 
2*a*b^4 + b^5)*cos(d*x + c))*cos(14*d*x + 14*c) - (2*a^2*b^3 - 24*a*b^4 - 
5*b^5 - 4*(16*a^3*b^2 - 206*a^2*b^3 + 128*a*b^4 + 35*b^5)*cos(12*d*x + ...
 

Giac [F]

\[ \int \frac {\sin ^5(c+d x)}{\left (a-b \sin ^4(c+d x)\right )^3} \, dx=\int { -\frac {\sin \left (d x + c\right )^{5}}{{\left (b \sin \left (d x + c\right )^{4} - a\right )}^{3}} \,d x } \] Input:

integrate(sin(d*x+c)^5/(a-b*sin(d*x+c)^4)^3,x, algorithm="giac")
 

Output:

sage0*x
 

Mupad [B] (verification not implemented)

Time = 42.53 (sec) , antiderivative size = 6362, normalized size of antiderivative = 20.33 \[ \int \frac {\sin ^5(c+d x)}{\left (a-b \sin ^4(c+d x)\right )^3} \, dx=\text {Too large to display} \] Input:

int(sin(c + d*x)^5/(a - b*sin(c + d*x)^4)^3,x)
 

Output:

- ((cos(c + d*x)^3*(14*a*b - 5*a^2 + 3*b^2))/(16*a*(a - b)^2) - (cos(c + d 
*x)^5*(19*a*b - a^2 + 6*b^2))/(32*a*(a^2 - 2*a*b + b^2)) + (b*cos(c + d*x) 
^7*(2*a + b))/(16*a*(a^2 - 2*a*b + b^2)) + (cos(c + d*x)*(15*a*b + 3*a^2 + 
 2*b^2))/(32*a*b*(a - b)))/(d*(a^2 - 2*a*b + b^2 + cos(c + d*x)^2*(4*a*b - 
 4*b^2) - cos(c + d*x)^4*(2*a*b - 6*b^2) - 4*b^2*cos(c + d*x)^6 + b^2*cos( 
c + d*x)^8)) - (atan(((((16384*a^3*b^6 - 172032*a^4*b^5 + 319488*a^5*b^4 - 
 188416*a^6*b^3 + 24576*a^7*b^2)/(16384*(a^7 - 4*a^6*b + a^3*b^4 - 4*a^4*b 
^3 + 6*a^5*b^2)) - (cos(c + d*x)*((80*b^3*(a^9*b^5)^(1/2) - 9*a^3*(a^9*b^5 
)^(1/2) + 16*a^3*b^7 - 116*a^4*b^6 + 229*a^5*b^5 + 30*a^6*b^4 - 15*a^7*b^3 
 - 301*a*b^2*(a^9*b^5)^(1/2) + 86*a^2*b*(a^9*b^5)^(1/2))/(16384*(a^6*b^10 
- 5*a^7*b^9 + 10*a^8*b^8 - 10*a^9*b^7 + 5*a^10*b^6 - a^11*b^5)))^(1/2)*(16 
384*a^3*b^8 - 65536*a^4*b^7 + 98304*a^5*b^6 - 65536*a^6*b^5 + 16384*a^7*b^ 
4))/(256*(a^6 - 4*a^5*b + a^2*b^4 - 4*a^3*b^3 + 6*a^4*b^2)))*((80*b^3*(a^9 
*b^5)^(1/2) - 9*a^3*(a^9*b^5)^(1/2) + 16*a^3*b^7 - 116*a^4*b^6 + 229*a^5*b 
^5 + 30*a^6*b^4 - 15*a^7*b^3 - 301*a*b^2*(a^9*b^5)^(1/2) + 86*a^2*b*(a^9*b 
^5)^(1/2))/(16384*(a^6*b^10 - 5*a^7*b^9 + 10*a^8*b^8 - 10*a^9*b^7 + 5*a^10 
*b^6 - a^11*b^5)))^(1/2) + (cos(c + d*x)*(9*a^4*b - 100*a*b^4 + 16*b^5 + 2 
09*a^2*b^3 - 62*a^3*b^2))/(256*(a^6 - 4*a^5*b + a^2*b^4 - 4*a^3*b^3 + 6*a^ 
4*b^2)))*((80*b^3*(a^9*b^5)^(1/2) - 9*a^3*(a^9*b^5)^(1/2) + 16*a^3*b^7 - 1 
16*a^4*b^6 + 229*a^5*b^5 + 30*a^6*b^4 - 15*a^7*b^3 - 301*a*b^2*(a^9*b^5...
 

Reduce [F]

\[ \int \frac {\sin ^5(c+d x)}{\left (a-b \sin ^4(c+d x)\right )^3} \, dx=\text {too large to display} \] Input:

int(sin(d*x+c)^5/(a-b*sin(d*x+c)^4)^3,x)
 

Output:

(211584*cos(c + d*x)*sin(c + d*x)**6*a**3*b**3 - 396288*cos(c + d*x)*sin(c 
 + d*x)**6*a**2*b**4 + 1032192*cos(c + d*x)*sin(c + d*x)**6*a*b**5 - 26214 
4*cos(c + d*x)*sin(c + d*x)**6*b**6 - 20160*cos(c + d*x)*sin(c + d*x)**4*a 
**4*b**2 - 954624*cos(c + d*x)*sin(c + d*x)**4*a**3*b**3 + 3569664*cos(c + 
 d*x)*sin(c + d*x)**4*a**2*b**4 - 10125312*cos(c + d*x)*sin(c + d*x)**4*a* 
b**5 + 2621440*cos(c + d*x)*sin(c + d*x)**4*b**6 - 26880*cos(c + d*x)*sin( 
c + d*x)**2*a**4*b**2 + 1529856*cos(c + d*x)*sin(c + d*x)**2*a**3*b**3 - 6 
610944*cos(c + d*x)*sin(c + d*x)**2*a**2*b**4 + 23724032*cos(c + d*x)*sin( 
c + d*x)**2*a*b**5 - 6291456*cos(c + d*x)*sin(c + d*x)**2*b**6 - 53760*cos 
(c + d*x)*a**4*b**2 - 1069056*cos(c + d*x)*a**3*b**3 + 3293184*cos(c + d*x 
)*a**2*b**4 - 15466496*cos(c + d*x)*a*b**5 + 4194304*cos(c + d*x)*b**6 - 1 
29024000*int(tan((c + d*x)/2)**5/(5*tan((c + d*x)/2)**24*a**4 + 8*tan((c + 
 d*x)/2)**24*a**3*b + 60*tan((c + d*x)/2)**22*a**4 + 96*tan((c + d*x)/2)** 
22*a**3*b + 330*tan((c + d*x)/2)**20*a**4 + 288*tan((c + d*x)/2)**20*a**3* 
b - 384*tan((c + d*x)/2)**20*a**2*b**2 + 1100*tan((c + d*x)/2)**18*a**4 - 
160*tan((c + d*x)/2)**18*a**3*b - 3072*tan((c + d*x)/2)**18*a**2*b**2 + 24 
75*tan((c + d*x)/2)**16*a**4 - 2760*tan((c + d*x)/2)**16*a**3*b - 6912*tan 
((c + d*x)/2)**16*a**2*b**2 + 6144*tan((c + d*x)/2)**16*a*b**3 + 3960*tan( 
(c + d*x)/2)**14*a**4 - 7104*tan((c + d*x)/2)**14*a**3*b - 6144*tan((c + d 
*x)/2)**14*a**2*b**2 + 24576*tan((c + d*x)/2)**14*a*b**3 + 4620*tan((c ...