\(\int \frac {\cos ^6(e+f x)}{(a+b \sin ^2(e+f x))^{3/2}} \, dx\) [292]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 276 \[ \int \frac {\cos ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\frac {(a+b) \cos ^3(e+f x) \sin (e+f x)}{a b f \sqrt {a+b \sin ^2(e+f x)}}+\frac {(4 a+3 b) \cos (e+f x) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 a b^2 f}+\frac {\left (8 a^2+13 a b+3 b^2\right ) \sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 a b^3 f \sqrt {\frac {a+b \sin ^2(e+f x)}{a}}}-\frac {(a+b) (8 a+9 b) \sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right ) \sec (e+f x) \sqrt {\frac {a+b \sin ^2(e+f x)}{a}}}{3 b^3 f \sqrt {a+b \sin ^2(e+f x)}} \] Output:

(a+b)*cos(f*x+e)^3*sin(f*x+e)/a/b/f/(a+b*sin(f*x+e)^2)^(1/2)+1/3*(4*a+3*b) 
*cos(f*x+e)*sin(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/a/b^2/f+1/3*(8*a^2+13*a*b+ 
3*b^2)*(cos(f*x+e)^2)^(1/2)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)* 
(a+b*sin(f*x+e)^2)^(1/2)/a/b^3/f/((a+b*sin(f*x+e)^2)/a)^(1/2)-1/3*(a+b)*(8 
*a+9*b)*(cos(f*x+e)^2)^(1/2)*EllipticF(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e) 
*((a+b*sin(f*x+e)^2)/a)^(1/2)/b^3/f/(a+b*sin(f*x+e)^2)^(1/2)
 

Mathematica [A] (verified)

Time = 1.80 (sec) , antiderivative size = 184, normalized size of antiderivative = 0.67 \[ \int \frac {\cos ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\frac {4 a \left (8 a^2+13 a b+3 b^2\right ) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )-4 a \left (8 a^2+17 a b+9 b^2\right ) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )+\sqrt {2} b \left (8 a^2+13 a b+6 b^2-a b \cos (2 (e+f x))\right ) \sin (2 (e+f x))}{12 a b^3 f \sqrt {2 a+b-b \cos (2 (e+f x))}} \] Input:

Integrate[Cos[e + f*x]^6/(a + b*Sin[e + f*x]^2)^(3/2),x]
 

Output:

(4*a*(8*a^2 + 13*a*b + 3*b^2)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*Ellip 
ticE[e + f*x, -(b/a)] - 4*a*(8*a^2 + 17*a*b + 9*b^2)*Sqrt[(2*a + b - b*Cos 
[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)] + Sqrt[2]*b*(8*a^2 + 13*a*b + 
 6*b^2 - a*b*Cos[2*(e + f*x)])*Sin[2*(e + f*x)])/(12*a*b^3*f*Sqrt[2*a + b 
- b*Cos[2*(e + f*x)]])
 

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 273, normalized size of antiderivative = 0.99, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3671, 315, 25, 403, 399, 323, 321, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (e+f x)^6}{\left (a+b \sin (e+f x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 3671

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \int \frac {\left (1-\sin ^2(e+f x)\right )^{5/2}}{\left (b \sin ^2(e+f x)+a\right )^{3/2}}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 315

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {\int -\frac {\sqrt {1-\sin ^2(e+f x)} \left (a-(4 a+3 b) \sin ^2(e+f x)\right )}{\sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{a b}+\frac {(a+b) \sin (e+f x) \left (1-\sin ^2(e+f x)\right )^{3/2}}{a b \sqrt {a+b \sin ^2(e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {(a+b) \sin (e+f x) \left (1-\sin ^2(e+f x)\right )^{3/2}}{a b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\int \frac {\sqrt {1-\sin ^2(e+f x)} \left (a-(4 a+3 b) \sin ^2(e+f x)\right )}{\sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{a b}\right )}{f}\)

\(\Big \downarrow \) 403

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {(a+b) \sin (e+f x) \left (1-\sin ^2(e+f x)\right )^{3/2}}{a b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\frac {\int \frac {2 a (2 a+3 b)-\left (8 a^2+13 b a+3 b^2\right ) \sin ^2(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{3 b}-\frac {(4 a+3 b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}{3 b}}{a b}\right )}{f}\)

\(\Big \downarrow \) 399

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {(a+b) \sin (e+f x) \left (1-\sin ^2(e+f x)\right )^{3/2}}{a b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\frac {\frac {a (a+b) (8 a+9 b) \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{b}-\frac {\left (8 a^2+13 a b+3 b^2\right ) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}}{3 b}-\frac {(4 a+3 b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}{3 b}}{a b}\right )}{f}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {(a+b) \sin (e+f x) \left (1-\sin ^2(e+f x)\right )^{3/2}}{a b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\frac {\frac {a (a+b) (8 a+9 b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}d\sin (e+f x)}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\left (8 a^2+13 a b+3 b^2\right ) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}}{3 b}-\frac {(4 a+3 b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}{3 b}}{a b}\right )}{f}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {(a+b) \sin (e+f x) \left (1-\sin ^2(e+f x)\right )^{3/2}}{a b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\frac {\frac {a (a+b) (8 a+9 b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\left (8 a^2+13 a b+3 b^2\right ) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}}{3 b}-\frac {(4 a+3 b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}{3 b}}{a b}\right )}{f}\)

\(\Big \downarrow \) 330

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {(a+b) \sin (e+f x) \left (1-\sin ^2(e+f x)\right )^{3/2}}{a b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\frac {\frac {a (a+b) (8 a+9 b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\left (8 a^2+13 a b+3 b^2\right ) \sqrt {a+b \sin ^2(e+f x)} \int \frac {\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}}{3 b}-\frac {(4 a+3 b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}{3 b}}{a b}\right )}{f}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {(a+b) \sin (e+f x) \left (1-\sin ^2(e+f x)\right )^{3/2}}{a b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\frac {\frac {a (a+b) (8 a+9 b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {\left (8 a^2+13 a b+3 b^2\right ) \sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}}{3 b}-\frac {(4 a+3 b) \sin (e+f x) \sqrt {1-\sin ^2(e+f x)} \sqrt {a+b \sin ^2(e+f x)}}{3 b}}{a b}\right )}{f}\)

Input:

Int[Cos[e + f*x]^6/(a + b*Sin[e + f*x]^2)^(3/2),x]
 

Output:

(Sqrt[Cos[e + f*x]^2]*Sec[e + f*x]*(((a + b)*Sin[e + f*x]*(1 - Sin[e + f*x 
]^2)^(3/2))/(a*b*Sqrt[a + b*Sin[e + f*x]^2]) - (-1/3*((4*a + 3*b)*Sin[e + 
f*x]*Sqrt[1 - Sin[e + f*x]^2]*Sqrt[a + b*Sin[e + f*x]^2])/b + (-(((8*a^2 + 
 13*a*b + 3*b^2)*EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sqrt[a + b*Sin[e 
+ f*x]^2])/(b*Sqrt[1 + (b*Sin[e + f*x]^2)/a])) + (a*(a + b)*(8*a + 9*b)*El 
lipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(b*S 
qrt[a + b*Sin[e + f*x]^2]))/(3*b))/(a*b)))/f
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 315
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(a*d - c*b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1)/(2*a*b*(p + 1))), 
x] - Simp[1/(2*a*b*(p + 1))   Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 2)*S 
imp[c*(a*d - c*b*(2*p + 3)) + d*(a*d*(2*(q - 1) + 1) - b*c*(2*(p + q) + 1)) 
*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, - 
1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, 2, p, q, x]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 403
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[f*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(b*(2*(p + 
 q + 1) + 1))), x] + Simp[1/(b*(2*(p + q + 1) + 1))   Int[(a + b*x^2)^p*(c 
+ d*x^2)^(q - 1)*Simp[c*(b*e - a*f + b*e*2*(p + q + 1)) + (d*(b*e - a*f) + 
f*2*q*(b*c - a*d) + b*d*e*2*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, p}, x] && GtQ[q, 0] && NeQ[2*(p + q + 1) + 1, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3671
Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^( 
p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff*(Sqrt[ 
Cos[e + f*x]^2]/(f*Cos[e + f*x]))   Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a 
 + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] 
 && IntegerQ[m/2] &&  !IntegerQ[p]
 
Maple [A] (verified)

Time = 5.47 (sec) , antiderivative size = 415, normalized size of antiderivative = 1.50

method result size
default \(-\frac {\sin \left (f x +e \right ) \cos \left (f x +e \right )^{4} a \,b^{2}+\left (-4 a^{2} b -7 b^{2} a -3 b^{3}\right ) \cos \left (f x +e \right )^{2} \sin \left (f x +e \right )+8 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \cos \left (f x +e \right )^{2}}{a}+\frac {a +b}{a}}\, \operatorname {EllipticF}\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{3}+17 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \cos \left (f x +e \right )^{2}}{a}+\frac {a +b}{a}}\, \operatorname {EllipticF}\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2} b +9 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \cos \left (f x +e \right )^{2}}{a}+\frac {a +b}{a}}\, \operatorname {EllipticF}\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a \,b^{2}-8 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \cos \left (f x +e \right )^{2}}{a}+\frac {a +b}{a}}\, \operatorname {EllipticE}\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{3}-13 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \cos \left (f x +e \right )^{2}}{a}+\frac {a +b}{a}}\, \operatorname {EllipticE}\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2} b -3 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {-\frac {b \cos \left (f x +e \right )^{2}}{a}+\frac {a +b}{a}}\, \operatorname {EllipticE}\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a \,b^{2}}{3 a \,b^{3} \cos \left (f x +e \right ) \sqrt {a +b \sin \left (f x +e \right )^{2}}\, f}\) \(415\)

Input:

int(cos(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/3*(sin(f*x+e)*cos(f*x+e)^4*a*b^2+(-4*a^2*b-7*a*b^2-3*b^3)*cos(f*x+e)^2* 
sin(f*x+e)+8*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*Ellipt 
icF(sin(f*x+e),(-b/a)^(1/2))*a^3+17*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^ 
2+(a+b)/a)^(1/2)*EllipticF(sin(f*x+e),(-b/a)^(1/2))*a^2*b+9*(cos(f*x+e)^2) 
^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*EllipticF(sin(f*x+e),(-b/a)^(1/2) 
)*a*b^2-8*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*EllipticE 
(sin(f*x+e),(-b/a)^(1/2))*a^3-13*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+( 
a+b)/a)^(1/2)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*a^2*b-3*(cos(f*x+e)^2)^(1 
/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*a 
*b^2)/a/b^3/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f
 

Fricas [F]

\[ \int \frac {\cos ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\cos \left (f x + e\right )^{6}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(cos(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")
 

Output:

integral(sqrt(-b*cos(f*x + e)^2 + a + b)*cos(f*x + e)^6/(b^2*cos(f*x + e)^ 
4 - 2*(a*b + b^2)*cos(f*x + e)^2 + a^2 + 2*a*b + b^2), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(cos(f*x+e)**6/(a+b*sin(f*x+e)**2)**(3/2),x)
 

Output:

Timed out
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {\cos ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\cos \left (f x + e\right )^{6}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(cos(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")
 

Output:

integrate(cos(f*x + e)^6/(b*sin(f*x + e)^2 + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {\cos ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\cos \left (f x + e\right )^{6}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(cos(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")
 

Output:

integrate(cos(f*x + e)^6/(b*sin(f*x + e)^2 + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^6}{{\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{3/2}} \,d x \] Input:

int(cos(e + f*x)^6/(a + b*sin(e + f*x)^2)^(3/2),x)
 

Output:

int(cos(e + f*x)^6/(a + b*sin(e + f*x)^2)^(3/2), x)
 

Reduce [F]

\[ \int \frac {\cos ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\sqrt {\sin \left (f x +e \right )^{2} b +a}\, \cos \left (f x +e \right )^{6}}{\sin \left (f x +e \right )^{4} b^{2}+2 \sin \left (f x +e \right )^{2} a b +a^{2}}d x \] Input:

int(cos(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x)
 

Output:

int((sqrt(sin(e + f*x)**2*b + a)*cos(e + f*x)**6)/(sin(e + f*x)**4*b**2 + 
2*sin(e + f*x)**2*a*b + a**2),x)