\(\int \frac {\sec (e+f x)}{(a+b \sin ^2(e+f x))^{5/2}} \, dx\) [300]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 126 \[ \int \frac {\sec (e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{5/2}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a+b} \sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{(a+b)^{5/2} f}+\frac {b \sin (e+f x)}{3 a (a+b) f \left (a+b \sin ^2(e+f x)\right )^{3/2}}+\frac {b (5 a+2 b) \sin (e+f x)}{3 a^2 (a+b)^2 f \sqrt {a+b \sin ^2(e+f x)}} \] Output:

arctanh((a+b)^(1/2)*sin(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2))/(a+b)^(5/2)/f+1/3 
*b*sin(f*x+e)/a/(a+b)/f/(a+b*sin(f*x+e)^2)^(3/2)+1/3*b*(5*a+2*b)*sin(f*x+e 
)/a^2/(a+b)^2/f/(a+b*sin(f*x+e)^2)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 7.79 (sec) , antiderivative size = 1291, normalized size of antiderivative = 10.25 \[ \int \frac {\sec (e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{5/2}} \, dx =\text {Too large to display} \] Input:

Integrate[Sec[e + f*x]/(a + b*Sin[e + f*x]^2)^(5/2),x]
 

Output:

(Sec[e + f*x]*Tan[e + f*x]*(1575*ArcSin[Sqrt[-(((a + b)*Tan[e + f*x]^2)/a) 
]] + (2100*b*ArcSin[Sqrt[-(((a + b)*Tan[e + f*x]^2)/a)]]*Sin[e + f*x]^2)/a 
 + (840*b^2*ArcSin[Sqrt[-(((a + b)*Tan[e + f*x]^2)/a)]]*Sin[e + f*x]^4)/a^ 
2 + (3150*(a + b)*ArcSin[Sqrt[-(((a + b)*Tan[e + f*x]^2)/a)]]*Tan[e + f*x] 
^2)/a + (4200*b*(a + b)*ArcSin[Sqrt[-(((a + b)*Tan[e + f*x]^2)/a)]]*Sin[e 
+ f*x]^2*Tan[e + f*x]^2)/a^2 + (1680*b^2*(a + b)*ArcSin[Sqrt[-(((a + b)*Ta 
n[e + f*x]^2)/a)]]*Sin[e + f*x]^4*Tan[e + f*x]^2)/a^3 + (1575*(a + b)^2*Ar 
cSin[Sqrt[-(((a + b)*Tan[e + f*x]^2)/a)]]*Tan[e + f*x]^4)/a^2 + (2100*b*(a 
 + b)^2*ArcSin[Sqrt[-(((a + b)*Tan[e + f*x]^2)/a)]]*Sin[e + f*x]^2*Tan[e + 
 f*x]^4)/a^3 + (840*b^2*(a + b)^2*ArcSin[Sqrt[-(((a + b)*Tan[e + f*x]^2)/a 
)]]*Sin[e + f*x]^4*Tan[e + f*x]^4)/a^4 + 2100*Sqrt[(Sec[e + f*x]^2*(a + b* 
Sin[e + f*x]^2))/a]*(-(((a + b)*Tan[e + f*x]^2)/a))^(3/2) + (2800*b*Sin[e 
+ f*x]^2*Sqrt[(Sec[e + f*x]^2*(a + b*Sin[e + f*x]^2))/a]*(-(((a + b)*Tan[e 
 + f*x]^2)/a))^(3/2))/a + (1120*b^2*Sin[e + f*x]^4*Sqrt[(Sec[e + f*x]^2*(a 
 + b*Sin[e + f*x]^2))/a]*(-(((a + b)*Tan[e + f*x]^2)/a))^(3/2))/a^2 + 96*H 
ypergeometric2F1[2, 2, 9/2, -(((a + b)*Tan[e + f*x]^2)/a)]*Sqrt[(Sec[e + f 
*x]^2*(a + b*Sin[e + f*x]^2))/a]*(-(((a + b)*Tan[e + f*x]^2)/a))^(7/2) + 2 
4*HypergeometricPFQ[{2, 2, 2}, {1, 9/2}, -(((a + b)*Tan[e + f*x]^2)/a)]*Sq 
rt[(Sec[e + f*x]^2*(a + b*Sin[e + f*x]^2))/a]*(-(((a + b)*Tan[e + f*x]^2)/ 
a))^(7/2) + (168*b*Hypergeometric2F1[2, 2, 9/2, -(((a + b)*Tan[e + f*x]...
 

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.06, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3042, 3669, 316, 402, 27, 291, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\cos (e+f x) \left (a+b \sin (e+f x)^2\right )^{5/2}}dx\)

\(\Big \downarrow \) 3669

\(\displaystyle \frac {\int \frac {1}{\left (1-\sin ^2(e+f x)\right ) \left (b \sin ^2(e+f x)+a\right )^{5/2}}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 316

\(\displaystyle \frac {\frac {b \sin (e+f x)}{3 a (a+b) \left (a+b \sin ^2(e+f x)\right )^{3/2}}-\frac {\int \frac {2 b \sin ^2(e+f x)+b-3 (a+b)}{\left (1-\sin ^2(e+f x)\right ) \left (b \sin ^2(e+f x)+a\right )^{3/2}}d\sin (e+f x)}{3 a (a+b)}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {b \sin (e+f x)}{3 a (a+b) \left (a+b \sin ^2(e+f x)\right )^{3/2}}-\frac {-\frac {\int \frac {3 a^2}{\left (1-\sin ^2(e+f x)\right ) \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{a (a+b)}-\frac {b (5 a+2 b) \sin (e+f x)}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}}{3 a (a+b)}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {b \sin (e+f x)}{3 a (a+b) \left (a+b \sin ^2(e+f x)\right )^{3/2}}-\frac {-\frac {3 a \int \frac {1}{\left (1-\sin ^2(e+f x)\right ) \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{a+b}-\frac {b (5 a+2 b) \sin (e+f x)}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}}{3 a (a+b)}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {b \sin (e+f x)}{3 a (a+b) \left (a+b \sin ^2(e+f x)\right )^{3/2}}-\frac {-\frac {3 a \int \frac {1}{1-\frac {(a+b) \sin ^2(e+f x)}{b \sin ^2(e+f x)+a}}d\frac {\sin (e+f x)}{\sqrt {b \sin ^2(e+f x)+a}}}{a+b}-\frac {b (5 a+2 b) \sin (e+f x)}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}}{3 a (a+b)}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {b \sin (e+f x)}{3 a (a+b) \left (a+b \sin ^2(e+f x)\right )^{3/2}}-\frac {-\frac {3 a \text {arctanh}\left (\frac {\sqrt {a+b} \sin (e+f x)}{\sqrt {a+b \sin ^2(e+f x)}}\right )}{(a+b)^{3/2}}-\frac {b (5 a+2 b) \sin (e+f x)}{a (a+b) \sqrt {a+b \sin ^2(e+f x)}}}{3 a (a+b)}}{f}\)

Input:

Int[Sec[e + f*x]/(a + b*Sin[e + f*x]^2)^(5/2),x]
 

Output:

((b*Sin[e + f*x])/(3*a*(a + b)*(a + b*Sin[e + f*x]^2)^(3/2)) - ((-3*a*ArcT 
anh[(Sqrt[a + b]*Sin[e + f*x])/Sqrt[a + b*Sin[e + f*x]^2]])/(a + b)^(3/2) 
- (b*(5*a + 2*b)*Sin[e + f*x])/(a*(a + b)*Sqrt[a + b*Sin[e + f*x]^2]))/(3* 
a*(a + b)))/f
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 316
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[1/(2*a*(p + 1)*(b*c - a*d))   Int[(a + b*x^2)^(p + 1)*(c + d*x 
^2)^q*Simp[b*c + 2*(p + 1)*(b*c - a*d) + d*b*(2*(p + q + 2) + 1)*x^2, x], x 
], x] /; FreeQ[{a, b, c, d, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  ! 
( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomialQ[a, b, c, d, 2, 
 p, q, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3669
Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff/f   S 
ubst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x] 
/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(898\) vs. \(2(112)=224\).

Time = 0.49 (sec) , antiderivative size = 899, normalized size of antiderivative = 7.13

method result size
default \(\frac {3 \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \cos \left (f x +e \right )^{2}}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right ) a^{4} b^{2}+3 \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \cos \left (f x +e \right )^{2}}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right ) a^{2} b^{4}-3 a^{4} b^{2} \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \cos \left (f x +e \right )^{2}}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right )-3 \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \cos \left (f x +e \right )^{2}}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right ) a^{2} b^{4}+6 \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \cos \left (f x +e \right )^{2}}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right ) a^{3} b^{3}-6 a^{3} b^{3} \ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \cos \left (f x +e \right )^{2}}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right )+3 a^{2} b^{4} \left (\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \cos \left (f x +e \right )^{2}}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right )-\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \cos \left (f x +e \right )^{2}}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right )\right ) \cos \left (f x +e \right )^{4}-2 \cos \left (f x +e \right )^{2} \sin \left (f x +e \right ) \sqrt {a +b}\, \sqrt {-b \cos \left (f x +e \right )^{2}+\frac {b^{2} a +b^{3}}{b^{2}}}\, b^{4} \left (5 a +2 b \right )+4 \sin \left (f x +e \right ) \sqrt {a +b}\, \sqrt {-b \cos \left (f x +e \right )^{2}+\frac {b^{2} a +b^{3}}{b^{2}}}\, b^{3} \left (3 a^{2}+4 a b +b^{2}\right )-6 a^{2} b^{3} \left (\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \cos \left (f x +e \right )^{2}}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right ) a +\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \cos \left (f x +e \right )^{2}}+2 b \sin \left (f x +e \right )+2 a}{\sin \left (f x +e \right )-1}\right ) b -\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \cos \left (f x +e \right )^{2}}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right ) a -\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {a +b -b \cos \left (f x +e \right )^{2}}-2 b \sin \left (f x +e \right )+2 a}{1+\sin \left (f x +e \right )}\right ) b \right ) \cos \left (f x +e \right )^{2}}{6 b^{2} \sqrt {a +b}\, a^{2} \left (a^{2} b^{2} \cos \left (f x +e \right )^{4}+2 a \,b^{3} \cos \left (f x +e \right )^{4}+b^{4} \cos \left (f x +e \right )^{4}-2 a^{3} b \cos \left (f x +e \right )^{2}-6 a^{2} b^{2} \cos \left (f x +e \right )^{2}-6 a \,b^{3} \cos \left (f x +e \right )^{2}-2 b^{4} \cos \left (f x +e \right )^{2}+a^{4}+4 a^{3} b +6 a^{2} b^{2}+4 a \,b^{3}+b^{4}\right ) f}\) \(899\)

Input:

int(sec(f*x+e)/(a+b*sin(f*x+e)^2)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/6/b^2/(a+b)^(1/2)/a^2/(a^2*b^2*cos(f*x+e)^4+2*a*b^3*cos(f*x+e)^4+b^4*cos 
(f*x+e)^4-2*a^3*b*cos(f*x+e)^2-6*a^2*b^2*cos(f*x+e)^2-6*a*b^3*cos(f*x+e)^2 
-2*b^4*cos(f*x+e)^2+a^4+4*a^3*b+6*a^2*b^2+4*a*b^3+b^4)*(3*ln(2/(sin(f*x+e) 
-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a^4*b^2+3*ln( 
2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))* 
a^2*b^4-3*a^4*b^2*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1 
/2)-b*sin(f*x+e)+a))-3*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^ 
2)^(1/2)-b*sin(f*x+e)+a))*a^2*b^4+6*ln(2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b- 
b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a^3*b^3-6*a^3*b^3*ln(2/(1+sin(f*x+e 
))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))+3*a^2*b^4*(ln( 
2/(sin(f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))- 
ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a 
)))*cos(f*x+e)^4-2*cos(f*x+e)^2*sin(f*x+e)*(a+b)^(1/2)*(-b*cos(f*x+e)^2+(a 
*b^2+b^3)/b^2)^(1/2)*b^4*(5*a+2*b)+4*sin(f*x+e)*(a+b)^(1/2)*(-b*cos(f*x+e) 
^2+(a*b^2+b^3)/b^2)^(1/2)*b^3*(3*a^2+4*a*b+b^2)-6*a^2*b^3*(ln(2/(sin(f*x+e 
)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a+ln(2/(sin( 
f*x+e)-1)*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*b-ln(2/ 
(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*a- 
ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a 
))*b)*cos(f*x+e)^2)/f
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 374 vs. \(2 (112) = 224\).

Time = 0.50 (sec) , antiderivative size = 775, normalized size of antiderivative = 6.15 \[ \int \frac {\sec (e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{5/2}} \, dx =\text {Too large to display} \] Input:

integrate(sec(f*x+e)/(a+b*sin(f*x+e)^2)^(5/2),x, algorithm="fricas")
 

Output:

[1/12*(3*(a^2*b^2*cos(f*x + e)^4 + a^4 + 2*a^3*b + a^2*b^2 - 2*(a^3*b + a^ 
2*b^2)*cos(f*x + e)^2)*sqrt(a + b)*log(((a^2 + 8*a*b + 8*b^2)*cos(f*x + e) 
^4 - 8*(a^2 + 3*a*b + 2*b^2)*cos(f*x + e)^2 - 4*((a + 2*b)*cos(f*x + e)^2 
- 2*a - 2*b)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(a + b)*sin(f*x + e) + 8* 
a^2 + 16*a*b + 8*b^2)/cos(f*x + e)^4) + 4*(6*a^3*b + 14*a^2*b^2 + 10*a*b^3 
 + 2*b^4 - (5*a^2*b^2 + 7*a*b^3 + 2*b^4)*cos(f*x + e)^2)*sqrt(-b*cos(f*x + 
 e)^2 + a + b)*sin(f*x + e))/((a^5*b^2 + 3*a^4*b^3 + 3*a^3*b^4 + a^2*b^5)* 
f*cos(f*x + e)^4 - 2*(a^6*b + 4*a^5*b^2 + 6*a^4*b^3 + 4*a^3*b^4 + a^2*b^5) 
*f*cos(f*x + e)^2 + (a^7 + 5*a^6*b + 10*a^5*b^2 + 10*a^4*b^3 + 5*a^3*b^4 + 
 a^2*b^5)*f), -1/6*(3*(a^2*b^2*cos(f*x + e)^4 + a^4 + 2*a^3*b + a^2*b^2 - 
2*(a^3*b + a^2*b^2)*cos(f*x + e)^2)*sqrt(-a - b)*arctan(1/2*((a + 2*b)*cos 
(f*x + e)^2 - 2*a - 2*b)*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-a - b)/(((a 
*b + b^2)*cos(f*x + e)^2 - a^2 - 2*a*b - b^2)*sin(f*x + e))) - 2*(6*a^3*b 
+ 14*a^2*b^2 + 10*a*b^3 + 2*b^4 - (5*a^2*b^2 + 7*a*b^3 + 2*b^4)*cos(f*x + 
e)^2)*sqrt(-b*cos(f*x + e)^2 + a + b)*sin(f*x + e))/((a^5*b^2 + 3*a^4*b^3 
+ 3*a^3*b^4 + a^2*b^5)*f*cos(f*x + e)^4 - 2*(a^6*b + 4*a^5*b^2 + 6*a^4*b^3 
 + 4*a^3*b^4 + a^2*b^5)*f*cos(f*x + e)^2 + (a^7 + 5*a^6*b + 10*a^5*b^2 + 1 
0*a^4*b^3 + 5*a^3*b^4 + a^2*b^5)*f)]
 

Sympy [F]

\[ \int \frac {\sec (e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {\sec {\left (e + f x \right )}}{\left (a + b \sin ^{2}{\left (e + f x \right )}\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(sec(f*x+e)/(a+b*sin(f*x+e)**2)**(5/2),x)
 

Output:

Integral(sec(e + f*x)/(a + b*sin(e + f*x)**2)**(5/2), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 272 vs. \(2 (112) = 224\).

Time = 0.15 (sec) , antiderivative size = 272, normalized size of antiderivative = 2.16 \[ \int \frac {\sec (e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{5/2}} \, dx=\frac {\frac {2 \, b \sin \left (f x + e\right )}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} a^{2} + {\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} a b} + \frac {6 \, b \sin \left (f x + e\right )}{\sqrt {b \sin \left (f x + e\right )^{2} + a} a^{3} + 2 \, \sqrt {b \sin \left (f x + e\right )^{2} + a} a^{2} b + \sqrt {b \sin \left (f x + e\right )^{2} + a} a b^{2}} + \frac {4 \, b \sin \left (f x + e\right )}{\sqrt {b \sin \left (f x + e\right )^{2} + a} a^{3} + \sqrt {b \sin \left (f x + e\right )^{2} + a} a^{2} b} + \frac {3 \, \operatorname {arsinh}\left (\frac {b \sin \left (f x + e\right )}{\sqrt {a b} {\left (\sin \left (f x + e\right ) + 1\right )}} - \frac {a}{\sqrt {a b} {\left (\sin \left (f x + e\right ) + 1\right )}}\right )}{{\left (a + b\right )}^{\frac {5}{2}}} + \frac {3 \, \operatorname {arsinh}\left (-\frac {b \sin \left (f x + e\right )}{\sqrt {a b} {\left (\sin \left (f x + e\right ) - 1\right )}} - \frac {a}{\sqrt {a b} {\left (\sin \left (f x + e\right ) - 1\right )}}\right )}{{\left (a + b\right )}^{\frac {5}{2}}}}{6 \, f} \] Input:

integrate(sec(f*x+e)/(a+b*sin(f*x+e)^2)^(5/2),x, algorithm="maxima")
 

Output:

1/6*(2*b*sin(f*x + e)/((b*sin(f*x + e)^2 + a)^(3/2)*a^2 + (b*sin(f*x + e)^ 
2 + a)^(3/2)*a*b) + 6*b*sin(f*x + e)/(sqrt(b*sin(f*x + e)^2 + a)*a^3 + 2*s 
qrt(b*sin(f*x + e)^2 + a)*a^2*b + sqrt(b*sin(f*x + e)^2 + a)*a*b^2) + 4*b* 
sin(f*x + e)/(sqrt(b*sin(f*x + e)^2 + a)*a^3 + sqrt(b*sin(f*x + e)^2 + a)* 
a^2*b) + 3*arcsinh(b*sin(f*x + e)/(sqrt(a*b)*(sin(f*x + e) + 1)) - a/(sqrt 
(a*b)*(sin(f*x + e) + 1)))/(a + b)^(5/2) + 3*arcsinh(-b*sin(f*x + e)/(sqrt 
(a*b)*(sin(f*x + e) - 1)) - a/(sqrt(a*b)*(sin(f*x + e) - 1)))/(a + b)^(5/2 
))/f
 

Giac [F]

\[ \int \frac {\sec (e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\sec \left (f x + e\right )}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(sec(f*x+e)/(a+b*sin(f*x+e)^2)^(5/2),x, algorithm="giac")
 

Output:

integrate(sec(f*x + e)/(b*sin(f*x + e)^2 + a)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec (e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {1}{\cos \left (e+f\,x\right )\,{\left (b\,{\sin \left (e+f\,x\right )}^2+a\right )}^{5/2}} \,d x \] Input:

int(1/(cos(e + f*x)*(a + b*sin(e + f*x)^2)^(5/2)),x)
 

Output:

int(1/(cos(e + f*x)*(a + b*sin(e + f*x)^2)^(5/2)), x)
 

Reduce [F]

\[ \int \frac {\sec (e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {\sqrt {\sin \left (f x +e \right )^{2} b +a}\, \sec \left (f x +e \right )}{\sin \left (f x +e \right )^{6} b^{3}+3 \sin \left (f x +e \right )^{4} a \,b^{2}+3 \sin \left (f x +e \right )^{2} a^{2} b +a^{3}}d x \] Input:

int(sec(f*x+e)/(a+b*sin(f*x+e)^2)^(5/2),x)
 

Output:

int((sqrt(sin(e + f*x)**2*b + a)*sec(e + f*x))/(sin(e + f*x)**6*b**3 + 3*s 
in(e + f*x)**4*a*b**2 + 3*sin(e + f*x)**2*a**2*b + a**3),x)