\(\int \frac {\cot ^5(c+d x)}{a+b \sin ^2(c+d x)} \, dx\) [378]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 89 \[ \int \frac {\cot ^5(c+d x)}{a+b \sin ^2(c+d x)} \, dx=\frac {(2 a+b) \csc ^2(c+d x)}{2 a^2 d}-\frac {\csc ^4(c+d x)}{4 a d}+\frac {(a+b)^2 \log (\sin (c+d x))}{a^3 d}-\frac {(a+b)^2 \log \left (a+b \sin ^2(c+d x)\right )}{2 a^3 d} \] Output:

1/2*(2*a+b)*csc(d*x+c)^2/a^2/d-1/4*csc(d*x+c)^4/a/d+(a+b)^2*ln(sin(d*x+c)) 
/a^3/d-1/2*(a+b)^2*ln(a+b*sin(d*x+c)^2)/a^3/d
 

Mathematica [A] (verified)

Time = 0.59 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.81 \[ \int \frac {\cot ^5(c+d x)}{a+b \sin ^2(c+d x)} \, dx=\frac {2 a (2 a+b) \csc ^2(c+d x)-a^2 \csc ^4(c+d x)+2 (a+b)^2 \left (2 \log (\sin (c+d x))-\log \left (a+b \sin ^2(c+d x)\right )\right )}{4 a^3 d} \] Input:

Integrate[Cot[c + d*x]^5/(a + b*Sin[c + d*x]^2),x]
 

Output:

(2*a*(2*a + b)*Csc[c + d*x]^2 - a^2*Csc[c + d*x]^4 + 2*(a + b)^2*(2*Log[Si 
n[c + d*x]] - Log[a + b*Sin[c + d*x]^2]))/(4*a^3*d)
 

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.91, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3042, 3673, 99, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^5(c+d x)}{a+b \sin ^2(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\tan (c+d x)^5 \left (a+b \sin (c+d x)^2\right )}dx\)

\(\Big \downarrow \) 3673

\(\displaystyle \frac {\int \frac {\csc ^6(c+d x) \left (1-\sin ^2(c+d x)\right )^2}{b \sin ^2(c+d x)+a}d\sin ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 99

\(\displaystyle \frac {\int \left (\frac {\csc ^6(c+d x)}{a}+\frac {(-2 a-b) \csc ^4(c+d x)}{a^2}+\frac {(a+b)^2 \csc ^2(c+d x)}{a^3}-\frac {b (a+b)^2}{a^3 \left (b \sin ^2(c+d x)+a\right )}\right )d\sin ^2(c+d x)}{2 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {(a+b)^2 \log \left (\sin ^2(c+d x)\right )}{a^3}-\frac {(a+b)^2 \log \left (a+b \sin ^2(c+d x)\right )}{a^3}+\frac {(2 a+b) \csc ^2(c+d x)}{a^2}-\frac {\csc ^4(c+d x)}{2 a}}{2 d}\)

Input:

Int[Cot[c + d*x]^5/(a + b*Sin[c + d*x]^2),x]
 

Output:

(((2*a + b)*Csc[c + d*x]^2)/a^2 - Csc[c + d*x]^4/(2*a) + ((a + b)^2*Log[Si 
n[c + d*x]^2])/a^3 - ((a + b)^2*Log[a + b*Sin[c + d*x]^2])/a^3)/(2*d)
 

Defintions of rubi rules used

rule 99
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], 
 x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] && (IntegerQ[p] | 
| (GtQ[m, 0] && GeQ[n, -1]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3673
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^ 
(m_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x]^2, x]}, Simp[ff^((m 
 + 1)/2)/(2*f)   Subst[Int[x^((m - 1)/2)*((a + b*ff*x)^p/(1 - ff*x)^((m + 1 
)/2)), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && Integ 
erQ[(m - 1)/2]
 
Maple [A] (verified)

Time = 3.63 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.81

method result size
derivativedivides \(\frac {-\frac {1}{16 a \left (\cos \left (d x +c \right )+1\right )^{2}}-\frac {-7 a -4 b}{16 a^{2} \left (\cos \left (d x +c \right )+1\right )}+\frac {\left (a^{2}+2 a b +b^{2}\right ) \ln \left (\cos \left (d x +c \right )+1\right )}{2 a^{3}}-\frac {\left (a^{2}+2 a b +b^{2}\right ) \ln \left (a +b -b \cos \left (d x +c \right )^{2}\right )}{2 a^{3}}-\frac {1}{16 a \left (\cos \left (d x +c \right )-1\right )^{2}}-\frac {7 a +4 b}{16 a^{2} \left (\cos \left (d x +c \right )-1\right )}+\frac {\left (a^{2}+2 a b +b^{2}\right ) \ln \left (\cos \left (d x +c \right )-1\right )}{2 a^{3}}}{d}\) \(161\)
default \(\frac {-\frac {1}{16 a \left (\cos \left (d x +c \right )+1\right )^{2}}-\frac {-7 a -4 b}{16 a^{2} \left (\cos \left (d x +c \right )+1\right )}+\frac {\left (a^{2}+2 a b +b^{2}\right ) \ln \left (\cos \left (d x +c \right )+1\right )}{2 a^{3}}-\frac {\left (a^{2}+2 a b +b^{2}\right ) \ln \left (a +b -b \cos \left (d x +c \right )^{2}\right )}{2 a^{3}}-\frac {1}{16 a \left (\cos \left (d x +c \right )-1\right )^{2}}-\frac {7 a +4 b}{16 a^{2} \left (\cos \left (d x +c \right )-1\right )}+\frac {\left (a^{2}+2 a b +b^{2}\right ) \ln \left (\cos \left (d x +c \right )-1\right )}{2 a^{3}}}{d}\) \(161\)
risch \(-\frac {2 \left (2 \,{\mathrm e}^{6 i \left (d x +c \right )} a +{\mathrm e}^{6 i \left (d x +c \right )} b -2 \,{\mathrm e}^{4 i \left (d x +c \right )} a -2 b \,{\mathrm e}^{4 i \left (d x +c \right )}+2 a \,{\mathrm e}^{2 i \left (d x +c \right )}+b \,{\mathrm e}^{2 i \left (d x +c \right )}\right )}{d \,a^{2} \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{4}}+\frac {\ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{a d}+\frac {2 \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right ) b}{a^{2} d}+\frac {\ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right ) b^{2}}{d \,a^{3}}-\frac {\ln \left ({\mathrm e}^{4 i \left (d x +c \right )}-\frac {2 \left (2 a +b \right ) {\mathrm e}^{2 i \left (d x +c \right )}}{b}+1\right )}{2 a d}-\frac {\ln \left ({\mathrm e}^{4 i \left (d x +c \right )}-\frac {2 \left (2 a +b \right ) {\mathrm e}^{2 i \left (d x +c \right )}}{b}+1\right ) b}{a^{2} d}-\frac {\ln \left ({\mathrm e}^{4 i \left (d x +c \right )}-\frac {2 \left (2 a +b \right ) {\mathrm e}^{2 i \left (d x +c \right )}}{b}+1\right ) b^{2}}{2 d \,a^{3}}\) \(277\)

Input:

int(cot(d*x+c)^5/(a+b*sin(d*x+c)^2),x,method=_RETURNVERBOSE)
 

Output:

1/d*(-1/16/a/(cos(d*x+c)+1)^2-1/16*(-7*a-4*b)/a^2/(cos(d*x+c)+1)+1/2*(a^2+ 
2*a*b+b^2)/a^3*ln(cos(d*x+c)+1)-1/2*(a^2+2*a*b+b^2)/a^3*ln(a+b-b*cos(d*x+c 
)^2)-1/16/a/(cos(d*x+c)-1)^2-1/16*(7*a+4*b)/a^2/(cos(d*x+c)-1)+1/2*(a^2+2* 
a*b+b^2)/a^3*ln(cos(d*x+c)-1))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 198 vs. \(2 (83) = 166\).

Time = 0.14 (sec) , antiderivative size = 198, normalized size of antiderivative = 2.22 \[ \int \frac {\cot ^5(c+d x)}{a+b \sin ^2(c+d x)} \, dx=-\frac {2 \, {\left (2 \, a^{2} + a b\right )} \cos \left (d x + c\right )^{2} - 3 \, a^{2} - 2 \, a b + 2 \, {\left ({\left (a^{2} + 2 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{4} - 2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{2} + a^{2} + 2 \, a b + b^{2}\right )} \log \left (-b \cos \left (d x + c\right )^{2} + a + b\right ) - 4 \, {\left ({\left (a^{2} + 2 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{4} - 2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{2} + a^{2} + 2 \, a b + b^{2}\right )} \log \left (\frac {1}{2} \, \sin \left (d x + c\right )\right )}{4 \, {\left (a^{3} d \cos \left (d x + c\right )^{4} - 2 \, a^{3} d \cos \left (d x + c\right )^{2} + a^{3} d\right )}} \] Input:

integrate(cot(d*x+c)^5/(a+b*sin(d*x+c)^2),x, algorithm="fricas")
 

Output:

-1/4*(2*(2*a^2 + a*b)*cos(d*x + c)^2 - 3*a^2 - 2*a*b + 2*((a^2 + 2*a*b + b 
^2)*cos(d*x + c)^4 - 2*(a^2 + 2*a*b + b^2)*cos(d*x + c)^2 + a^2 + 2*a*b + 
b^2)*log(-b*cos(d*x + c)^2 + a + b) - 4*((a^2 + 2*a*b + b^2)*cos(d*x + c)^ 
4 - 2*(a^2 + 2*a*b + b^2)*cos(d*x + c)^2 + a^2 + 2*a*b + b^2)*log(1/2*sin( 
d*x + c)))/(a^3*d*cos(d*x + c)^4 - 2*a^3*d*cos(d*x + c)^2 + a^3*d)
 

Sympy [F]

\[ \int \frac {\cot ^5(c+d x)}{a+b \sin ^2(c+d x)} \, dx=\int \frac {\cot ^{5}{\left (c + d x \right )}}{a + b \sin ^{2}{\left (c + d x \right )}}\, dx \] Input:

integrate(cot(d*x+c)**5/(a+b*sin(d*x+c)**2),x)
 

Output:

Integral(cot(c + d*x)**5/(a + b*sin(c + d*x)**2), x)
 

Maxima [A] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.03 \[ \int \frac {\cot ^5(c+d x)}{a+b \sin ^2(c+d x)} \, dx=-\frac {\frac {2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \log \left (b \sin \left (d x + c\right )^{2} + a\right )}{a^{3}} - \frac {2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \log \left (\sin \left (d x + c\right )^{2}\right )}{a^{3}} - \frac {2 \, {\left (2 \, a + b\right )} \sin \left (d x + c\right )^{2} - a}{a^{2} \sin \left (d x + c\right )^{4}}}{4 \, d} \] Input:

integrate(cot(d*x+c)^5/(a+b*sin(d*x+c)^2),x, algorithm="maxima")
 

Output:

-1/4*(2*(a^2 + 2*a*b + b^2)*log(b*sin(d*x + c)^2 + a)/a^3 - 2*(a^2 + 2*a*b 
 + b^2)*log(sin(d*x + c)^2)/a^3 - (2*(2*a + b)*sin(d*x + c)^2 - a)/(a^2*si 
n(d*x + c)^4))/d
 

Giac [A] (verification not implemented)

Time = 0.67 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.21 \[ \int \frac {\cot ^5(c+d x)}{a+b \sin ^2(c+d x)} \, dx=\frac {{\left (a^{2} + 2 \, a b + b^{2}\right )} \log \left ({\left | \sin \left (d x + c\right ) \right |}\right )}{a^{3} d} - \frac {{\left (a^{2} b + 2 \, a b^{2} + b^{3}\right )} \log \left ({\left | b \sin \left (d x + c\right )^{2} + a \right |}\right )}{2 \, a^{3} b d} + \frac {2 \, {\left (2 \, a^{2} + a b\right )} \sin \left (d x + c\right )^{2} - a^{2}}{4 \, a^{3} d \sin \left (d x + c\right )^{4}} \] Input:

integrate(cot(d*x+c)^5/(a+b*sin(d*x+c)^2),x, algorithm="giac")
 

Output:

(a^2 + 2*a*b + b^2)*log(abs(sin(d*x + c)))/(a^3*d) - 1/2*(a^2*b + 2*a*b^2 
+ b^3)*log(abs(b*sin(d*x + c)^2 + a))/(a^3*b*d) + 1/4*(2*(2*a^2 + a*b)*sin 
(d*x + c)^2 - a^2)/(a^3*d*sin(d*x + c)^4)
 

Mupad [B] (verification not implemented)

Time = 34.82 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.16 \[ \int \frac {\cot ^5(c+d x)}{a+b \sin ^2(c+d x)} \, dx=\frac {\ln \left (\mathrm {tan}\left (c+d\,x\right )\right )\,\left (a^2+2\,a\,b+b^2\right )}{a^3\,d}-\frac {\ln \left (a+a\,{\mathrm {tan}\left (c+d\,x\right )}^2+b\,{\mathrm {tan}\left (c+d\,x\right )}^2\right )\,\left (a^2+2\,a\,b+b^2\right )}{2\,a^3\,d}-\frac {\frac {1}{4\,a}-\frac {{\mathrm {tan}\left (c+d\,x\right )}^2\,\left (a+b\right )}{2\,a^2}}{d\,{\mathrm {tan}\left (c+d\,x\right )}^4} \] Input:

int(cot(c + d*x)^5/(a + b*sin(c + d*x)^2),x)
 

Output:

(log(tan(c + d*x))*(2*a*b + a^2 + b^2))/(a^3*d) - (log(a + a*tan(c + d*x)^ 
2 + b*tan(c + d*x)^2)*(2*a*b + a^2 + b^2))/(2*a^3*d) - (1/(4*a) - (tan(c + 
 d*x)^2*(a + b))/(2*a^2))/(d*tan(c + d*x)^4)
 

Reduce [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 521, normalized size of antiderivative = 5.85 \[ \int \frac {\cot ^5(c+d x)}{a+b \sin ^2(c+d x)} \, dx=\frac {-16 \,\mathrm {log}\left (-\sqrt {2 \sqrt {b}\, \sqrt {a +b}-a -2 b}+\sqrt {a}\, \tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{4} a^{2}-32 \,\mathrm {log}\left (-\sqrt {2 \sqrt {b}\, \sqrt {a +b}-a -2 b}+\sqrt {a}\, \tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{4} a b -16 \,\mathrm {log}\left (-\sqrt {2 \sqrt {b}\, \sqrt {a +b}-a -2 b}+\sqrt {a}\, \tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{4} b^{2}-16 \,\mathrm {log}\left (\sqrt {2 \sqrt {b}\, \sqrt {a +b}-a -2 b}+\sqrt {a}\, \tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{4} a^{2}-32 \,\mathrm {log}\left (\sqrt {2 \sqrt {b}\, \sqrt {a +b}-a -2 b}+\sqrt {a}\, \tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{4} a b -16 \,\mathrm {log}\left (\sqrt {2 \sqrt {b}\, \sqrt {a +b}-a -2 b}+\sqrt {a}\, \tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{4} b^{2}-16 \,\mathrm {log}\left (2 \sqrt {b}\, \sqrt {a +b}+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +a +2 b \right ) \sin \left (d x +c \right )^{4} a^{2}-32 \,\mathrm {log}\left (2 \sqrt {b}\, \sqrt {a +b}+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +a +2 b \right ) \sin \left (d x +c \right )^{4} a b -16 \,\mathrm {log}\left (2 \sqrt {b}\, \sqrt {a +b}+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +a +2 b \right ) \sin \left (d x +c \right )^{4} b^{2}+32 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{4} a^{2}+64 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{4} a b +32 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sin \left (d x +c \right )^{4} b^{2}-13 \sin \left (d x +c \right )^{4} a^{2}-8 \sin \left (d x +c \right )^{4} a b +32 \sin \left (d x +c \right )^{2} a^{2}+16 \sin \left (d x +c \right )^{2} a b -8 a^{2}}{32 \sin \left (d x +c \right )^{4} a^{3} d} \] Input:

int(cot(d*x+c)^5/(a+b*sin(d*x+c)^2),x)
 

Output:

( - 16*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + sqrt(a)*tan((c + d*x 
)/2))*sin(c + d*x)**4*a**2 - 32*log( - sqrt(2*sqrt(b)*sqrt(a + b) - a - 2* 
b) + sqrt(a)*tan((c + d*x)/2))*sin(c + d*x)**4*a*b - 16*log( - sqrt(2*sqrt 
(b)*sqrt(a + b) - a - 2*b) + sqrt(a)*tan((c + d*x)/2))*sin(c + d*x)**4*b** 
2 - 16*log(sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + sqrt(a)*tan((c + d*x)/2 
))*sin(c + d*x)**4*a**2 - 32*log(sqrt(2*sqrt(b)*sqrt(a + b) - a - 2*b) + s 
qrt(a)*tan((c + d*x)/2))*sin(c + d*x)**4*a*b - 16*log(sqrt(2*sqrt(b)*sqrt( 
a + b) - a - 2*b) + sqrt(a)*tan((c + d*x)/2))*sin(c + d*x)**4*b**2 - 16*lo 
g(2*sqrt(b)*sqrt(a + b) + tan((c + d*x)/2)**2*a + a + 2*b)*sin(c + d*x)**4 
*a**2 - 32*log(2*sqrt(b)*sqrt(a + b) + tan((c + d*x)/2)**2*a + a + 2*b)*si 
n(c + d*x)**4*a*b - 16*log(2*sqrt(b)*sqrt(a + b) + tan((c + d*x)/2)**2*a + 
 a + 2*b)*sin(c + d*x)**4*b**2 + 32*log(tan((c + d*x)/2))*sin(c + d*x)**4* 
a**2 + 64*log(tan((c + d*x)/2))*sin(c + d*x)**4*a*b + 32*log(tan((c + d*x) 
/2))*sin(c + d*x)**4*b**2 - 13*sin(c + d*x)**4*a**2 - 8*sin(c + d*x)**4*a* 
b + 32*sin(c + d*x)**2*a**2 + 16*sin(c + d*x)**2*a*b - 8*a**2)/(32*sin(c + 
 d*x)**4*a**3*d)