\(\int (c+d x)^2 \csc (a+b x) \, dx\) [24]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 14, antiderivative size = 123 \[ \int (c+d x)^2 \csc (a+b x) \, dx=-\frac {2 (c+d x)^2 \text {arctanh}\left (e^{i (a+b x)}\right )}{b}+\frac {2 i d (c+d x) \operatorname {PolyLog}\left (2,-e^{i (a+b x)}\right )}{b^2}-\frac {2 i d (c+d x) \operatorname {PolyLog}\left (2,e^{i (a+b x)}\right )}{b^2}-\frac {2 d^2 \operatorname {PolyLog}\left (3,-e^{i (a+b x)}\right )}{b^3}+\frac {2 d^2 \operatorname {PolyLog}\left (3,e^{i (a+b x)}\right )}{b^3} \] Output:

-2*(d*x+c)^2*arctanh(exp(I*(b*x+a)))/b+2*I*d*(d*x+c)*polylog(2,-exp(I*(b*x 
+a)))/b^2-2*I*d*(d*x+c)*polylog(2,exp(I*(b*x+a)))/b^2-2*d^2*polylog(3,-exp 
(I*(b*x+a)))/b^3+2*d^2*polylog(3,exp(I*(b*x+a)))/b^3
 

Mathematica [A] (verified)

Time = 0.34 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.20 \[ \int (c+d x)^2 \csc (a+b x) \, dx=\frac {(c+d x)^2 \log \left (1-e^{i (a+b x)}\right )-(c+d x)^2 \log \left (1+e^{i (a+b x)}\right )+\frac {2 i d \left (b (c+d x) \operatorname {PolyLog}\left (2,-e^{i (a+b x)}\right )+i d \operatorname {PolyLog}\left (3,-e^{i (a+b x)}\right )\right )}{b^2}+\frac {2 d \left (-i b (c+d x) \operatorname {PolyLog}\left (2,e^{i (a+b x)}\right )+d \operatorname {PolyLog}\left (3,e^{i (a+b x)}\right )\right )}{b^2}}{b} \] Input:

Integrate[(c + d*x)^2*Csc[a + b*x],x]
 

Output:

((c + d*x)^2*Log[1 - E^(I*(a + b*x))] - (c + d*x)^2*Log[1 + E^(I*(a + b*x) 
)] + ((2*I)*d*(b*(c + d*x)*PolyLog[2, -E^(I*(a + b*x))] + I*d*PolyLog[3, - 
E^(I*(a + b*x))]))/b^2 + (2*d*((-I)*b*(c + d*x)*PolyLog[2, E^(I*(a + b*x)) 
] + d*PolyLog[3, E^(I*(a + b*x))]))/b^2)/b
 

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.07, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.357, Rules used = {3042, 4671, 3011, 2720, 7143}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (c+d x)^2 \csc (a+b x) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (c+d x)^2 \csc (a+b x)dx\)

\(\Big \downarrow \) 4671

\(\displaystyle -\frac {2 d \int (c+d x) \log \left (1-e^{i (a+b x)}\right )dx}{b}+\frac {2 d \int (c+d x) \log \left (1+e^{i (a+b x)}\right )dx}{b}-\frac {2 (c+d x)^2 \text {arctanh}\left (e^{i (a+b x)}\right )}{b}\)

\(\Big \downarrow \) 3011

\(\displaystyle \frac {2 d \left (\frac {i (c+d x) \operatorname {PolyLog}\left (2,-e^{i (a+b x)}\right )}{b}-\frac {i d \int \operatorname {PolyLog}\left (2,-e^{i (a+b x)}\right )dx}{b}\right )}{b}-\frac {2 d \left (\frac {i (c+d x) \operatorname {PolyLog}\left (2,e^{i (a+b x)}\right )}{b}-\frac {i d \int \operatorname {PolyLog}\left (2,e^{i (a+b x)}\right )dx}{b}\right )}{b}-\frac {2 (c+d x)^2 \text {arctanh}\left (e^{i (a+b x)}\right )}{b}\)

\(\Big \downarrow \) 2720

\(\displaystyle \frac {2 d \left (\frac {i (c+d x) \operatorname {PolyLog}\left (2,-e^{i (a+b x)}\right )}{b}-\frac {d \int e^{-i (a+b x)} \operatorname {PolyLog}\left (2,-e^{i (a+b x)}\right )de^{i (a+b x)}}{b^2}\right )}{b}-\frac {2 d \left (\frac {i (c+d x) \operatorname {PolyLog}\left (2,e^{i (a+b x)}\right )}{b}-\frac {d \int e^{-i (a+b x)} \operatorname {PolyLog}\left (2,e^{i (a+b x)}\right )de^{i (a+b x)}}{b^2}\right )}{b}-\frac {2 (c+d x)^2 \text {arctanh}\left (e^{i (a+b x)}\right )}{b}\)

\(\Big \downarrow \) 7143

\(\displaystyle -\frac {2 (c+d x)^2 \text {arctanh}\left (e^{i (a+b x)}\right )}{b}+\frac {2 d \left (\frac {i (c+d x) \operatorname {PolyLog}\left (2,-e^{i (a+b x)}\right )}{b}-\frac {d \operatorname {PolyLog}\left (3,-e^{i (a+b x)}\right )}{b^2}\right )}{b}-\frac {2 d \left (\frac {i (c+d x) \operatorname {PolyLog}\left (2,e^{i (a+b x)}\right )}{b}-\frac {d \operatorname {PolyLog}\left (3,e^{i (a+b x)}\right )}{b^2}\right )}{b}\)

Input:

Int[(c + d*x)^2*Csc[a + b*x],x]
 

Output:

(-2*(c + d*x)^2*ArcTanh[E^(I*(a + b*x))])/b + (2*d*((I*(c + d*x)*PolyLog[2 
, -E^(I*(a + b*x))])/b - (d*PolyLog[3, -E^(I*(a + b*x))])/b^2))/b - (2*d*( 
(I*(c + d*x)*PolyLog[2, E^(I*(a + b*x))])/b - (d*PolyLog[3, E^(I*(a + b*x) 
)])/b^2))/b
 

Defintions of rubi rules used

rule 2720
Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Simp[v/D[v, x] 
   Subst[Int[FunctionOfExponentialFunction[u, x]/x, x], x, v], x]] /; Funct 
ionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; FreeQ 
[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x)) 
*(F_)[v_] /; FreeQ[{a, b, c}, x] && InverseFunctionQ[F[x]]]
 

rule 3011
Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.) 
*(x_))^(m_.), x_Symbol] :> Simp[(-(f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + 
b*x)))^n]/(b*c*n*Log[F])), x] + Simp[g*(m/(b*c*n*Log[F]))   Int[(f + g*x)^( 
m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e 
, f, g, n}, x] && GtQ[m, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4671
Int[csc[(e_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[- 
2*(c + d*x)^m*(ArcTanh[E^(I*(e + f*x))]/f), x] + (-Simp[d*(m/f)   Int[(c + 
d*x)^(m - 1)*Log[1 - E^(I*(e + f*x))], x], x] + Simp[d*(m/f)   Int[(c + d*x 
)^(m - 1)*Log[1 + E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e, f}, x] && IG 
tQ[m, 0]
 

rule 7143
Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_S 
ymbol] :> Simp[PolyLog[n + 1, c*(a + b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d 
, e, n, p}, x] && EqQ[b*d, a*e]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 360 vs. \(2 (111 ) = 222\).

Time = 0.86 (sec) , antiderivative size = 361, normalized size of antiderivative = 2.93

method result size
risch \(-\frac {2 d^{2} a^{2} \operatorname {arctanh}\left ({\mathrm e}^{i \left (b x +a \right )}\right )}{b^{3}}-\frac {2 i d^{2} \operatorname {polylog}\left (2, {\mathrm e}^{i \left (b x +a \right )}\right ) x}{b^{2}}+\frac {2 c d \ln \left (1-{\mathrm e}^{i \left (b x +a \right )}\right ) a}{b^{2}}+\frac {2 i d^{2} \operatorname {polylog}\left (2, -{\mathrm e}^{i \left (b x +a \right )}\right ) x}{b^{2}}-\frac {2 c d \ln \left ({\mathrm e}^{i \left (b x +a \right )}+1\right ) x}{b}+\frac {2 c d \ln \left (1-{\mathrm e}^{i \left (b x +a \right )}\right ) x}{b}+\frac {d^{2} \ln \left ({\mathrm e}^{i \left (b x +a \right )}+1\right ) a^{2}}{b^{3}}-\frac {d^{2} \ln \left (1-{\mathrm e}^{i \left (b x +a \right )}\right ) a^{2}}{b^{3}}-\frac {2 c d \ln \left ({\mathrm e}^{i \left (b x +a \right )}+1\right ) a}{b^{2}}+\frac {2 i c d \operatorname {polylog}\left (2, -{\mathrm e}^{i \left (b x +a \right )}\right )}{b^{2}}-\frac {2 i c d \operatorname {polylog}\left (2, {\mathrm e}^{i \left (b x +a \right )}\right )}{b^{2}}+\frac {4 c d a \,\operatorname {arctanh}\left ({\mathrm e}^{i \left (b x +a \right )}\right )}{b^{2}}-\frac {2 c^{2} \operatorname {arctanh}\left ({\mathrm e}^{i \left (b x +a \right )}\right )}{b}-\frac {d^{2} \ln \left ({\mathrm e}^{i \left (b x +a \right )}+1\right ) x^{2}}{b}-\frac {2 d^{2} \operatorname {polylog}\left (3, -{\mathrm e}^{i \left (b x +a \right )}\right )}{b^{3}}+\frac {d^{2} \ln \left (1-{\mathrm e}^{i \left (b x +a \right )}\right ) x^{2}}{b}+\frac {2 d^{2} \operatorname {polylog}\left (3, {\mathrm e}^{i \left (b x +a \right )}\right )}{b^{3}}\) \(361\)

Input:

int((d*x+c)^2*csc(b*x+a),x,method=_RETURNVERBOSE)
 

Output:

-2/b^3*d^2*a^2*arctanh(exp(I*(b*x+a)))-2*I/b^2*d^2*polylog(2,exp(I*(b*x+a) 
))*x+2/b^2*c*d*ln(1-exp(I*(b*x+a)))*a+2*I/b^2*d^2*polylog(2,-exp(I*(b*x+a) 
))*x-2/b*c*d*ln(exp(I*(b*x+a))+1)*x+2/b*c*d*ln(1-exp(I*(b*x+a)))*x+1/b^3*d 
^2*ln(exp(I*(b*x+a))+1)*a^2-1/b^3*d^2*ln(1-exp(I*(b*x+a)))*a^2-2/b^2*c*d*l 
n(exp(I*(b*x+a))+1)*a+2*I/b^2*c*d*polylog(2,-exp(I*(b*x+a)))-2*I/b^2*c*d*p 
olylog(2,exp(I*(b*x+a)))+4/b^2*c*d*a*arctanh(exp(I*(b*x+a)))-2/b*c^2*arcta 
nh(exp(I*(b*x+a)))-1/b*d^2*ln(exp(I*(b*x+a))+1)*x^2-2*d^2*polylog(3,-exp(I 
*(b*x+a)))/b^3+1/b*d^2*ln(1-exp(I*(b*x+a)))*x^2+2*d^2*polylog(3,exp(I*(b*x 
+a)))/b^3
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 504 vs. \(2 (107) = 214\).

Time = 0.11 (sec) , antiderivative size = 504, normalized size of antiderivative = 4.10 \[ \int (c+d x)^2 \csc (a+b x) \, dx=\frac {2 \, d^{2} {\rm polylog}\left (3, \cos \left (b x + a\right ) + i \, \sin \left (b x + a\right )\right ) + 2 \, d^{2} {\rm polylog}\left (3, \cos \left (b x + a\right ) - i \, \sin \left (b x + a\right )\right ) - 2 \, d^{2} {\rm polylog}\left (3, -\cos \left (b x + a\right ) + i \, \sin \left (b x + a\right )\right ) - 2 \, d^{2} {\rm polylog}\left (3, -\cos \left (b x + a\right ) - i \, \sin \left (b x + a\right )\right ) - 2 \, {\left (i \, b d^{2} x + i \, b c d\right )} {\rm Li}_2\left (\cos \left (b x + a\right ) + i \, \sin \left (b x + a\right )\right ) - 2 \, {\left (-i \, b d^{2} x - i \, b c d\right )} {\rm Li}_2\left (\cos \left (b x + a\right ) - i \, \sin \left (b x + a\right )\right ) - 2 \, {\left (i \, b d^{2} x + i \, b c d\right )} {\rm Li}_2\left (-\cos \left (b x + a\right ) + i \, \sin \left (b x + a\right )\right ) - 2 \, {\left (-i \, b d^{2} x - i \, b c d\right )} {\rm Li}_2\left (-\cos \left (b x + a\right ) - i \, \sin \left (b x + a\right )\right ) - {\left (b^{2} d^{2} x^{2} + 2 \, b^{2} c d x + b^{2} c^{2}\right )} \log \left (\cos \left (b x + a\right ) + i \, \sin \left (b x + a\right ) + 1\right ) - {\left (b^{2} d^{2} x^{2} + 2 \, b^{2} c d x + b^{2} c^{2}\right )} \log \left (\cos \left (b x + a\right ) - i \, \sin \left (b x + a\right ) + 1\right ) + {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \log \left (-\frac {1}{2} \, \cos \left (b x + a\right ) + \frac {1}{2} i \, \sin \left (b x + a\right ) + \frac {1}{2}\right ) + {\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \log \left (-\frac {1}{2} \, \cos \left (b x + a\right ) - \frac {1}{2} i \, \sin \left (b x + a\right ) + \frac {1}{2}\right ) + {\left (b^{2} d^{2} x^{2} + 2 \, b^{2} c d x + 2 \, a b c d - a^{2} d^{2}\right )} \log \left (-\cos \left (b x + a\right ) + i \, \sin \left (b x + a\right ) + 1\right ) + {\left (b^{2} d^{2} x^{2} + 2 \, b^{2} c d x + 2 \, a b c d - a^{2} d^{2}\right )} \log \left (-\cos \left (b x + a\right ) - i \, \sin \left (b x + a\right ) + 1\right )}{2 \, b^{3}} \] Input:

integrate((d*x+c)^2*csc(b*x+a),x, algorithm="fricas")
 

Output:

1/2*(2*d^2*polylog(3, cos(b*x + a) + I*sin(b*x + a)) + 2*d^2*polylog(3, co 
s(b*x + a) - I*sin(b*x + a)) - 2*d^2*polylog(3, -cos(b*x + a) + I*sin(b*x 
+ a)) - 2*d^2*polylog(3, -cos(b*x + a) - I*sin(b*x + a)) - 2*(I*b*d^2*x + 
I*b*c*d)*dilog(cos(b*x + a) + I*sin(b*x + a)) - 2*(-I*b*d^2*x - I*b*c*d)*d 
ilog(cos(b*x + a) - I*sin(b*x + a)) - 2*(I*b*d^2*x + I*b*c*d)*dilog(-cos(b 
*x + a) + I*sin(b*x + a)) - 2*(-I*b*d^2*x - I*b*c*d)*dilog(-cos(b*x + a) - 
 I*sin(b*x + a)) - (b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*log(cos(b*x + a) 
+ I*sin(b*x + a) + 1) - (b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*log(cos(b*x 
+ a) - I*sin(b*x + a) + 1) + (b^2*c^2 - 2*a*b*c*d + a^2*d^2)*log(-1/2*cos( 
b*x + a) + 1/2*I*sin(b*x + a) + 1/2) + (b^2*c^2 - 2*a*b*c*d + a^2*d^2)*log 
(-1/2*cos(b*x + a) - 1/2*I*sin(b*x + a) + 1/2) + (b^2*d^2*x^2 + 2*b^2*c*d* 
x + 2*a*b*c*d - a^2*d^2)*log(-cos(b*x + a) + I*sin(b*x + a) + 1) + (b^2*d^ 
2*x^2 + 2*b^2*c*d*x + 2*a*b*c*d - a^2*d^2)*log(-cos(b*x + a) - I*sin(b*x + 
 a) + 1))/b^3
 

Sympy [F]

\[ \int (c+d x)^2 \csc (a+b x) \, dx=\int \left (c + d x\right )^{2} \csc {\left (a + b x \right )}\, dx \] Input:

integrate((d*x+c)**2*csc(b*x+a),x)
 

Output:

Integral((c + d*x)**2*csc(a + b*x), x)
 

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 398 vs. \(2 (107) = 214\).

Time = 0.11 (sec) , antiderivative size = 398, normalized size of antiderivative = 3.24 \[ \int (c+d x)^2 \csc (a+b x) \, dx=-\frac {2 \, c^{2} \log \left (\cot \left (b x + a\right ) + \csc \left (b x + a\right )\right ) - \frac {4 \, a c d \log \left (\cot \left (b x + a\right ) + \csc \left (b x + a\right )\right )}{b} + \frac {2 \, a^{2} d^{2} \log \left (\cot \left (b x + a\right ) + \csc \left (b x + a\right )\right )}{b^{2}} + \frac {4 \, d^{2} {\rm Li}_{3}(-e^{\left (i \, b x + i \, a\right )}) - 4 \, d^{2} {\rm Li}_{3}(e^{\left (i \, b x + i \, a\right )}) - 2 \, {\left (-i \, {\left (b x + a\right )}^{2} d^{2} + 2 \, {\left (-i \, b c d + i \, a d^{2}\right )} {\left (b x + a\right )}\right )} \arctan \left (\sin \left (b x + a\right ), \cos \left (b x + a\right ) + 1\right ) - 2 \, {\left (-i \, {\left (b x + a\right )}^{2} d^{2} + 2 \, {\left (-i \, b c d + i \, a d^{2}\right )} {\left (b x + a\right )}\right )} \arctan \left (\sin \left (b x + a\right ), -\cos \left (b x + a\right ) + 1\right ) - 4 \, {\left (i \, b c d + i \, {\left (b x + a\right )} d^{2} - i \, a d^{2}\right )} {\rm Li}_2\left (-e^{\left (i \, b x + i \, a\right )}\right ) - 4 \, {\left (-i \, b c d - i \, {\left (b x + a\right )} d^{2} + i \, a d^{2}\right )} {\rm Li}_2\left (e^{\left (i \, b x + i \, a\right )}\right ) + {\left ({\left (b x + a\right )}^{2} d^{2} + 2 \, {\left (b c d - a d^{2}\right )} {\left (b x + a\right )}\right )} \log \left (\cos \left (b x + a\right )^{2} + \sin \left (b x + a\right )^{2} + 2 \, \cos \left (b x + a\right ) + 1\right ) - {\left ({\left (b x + a\right )}^{2} d^{2} + 2 \, {\left (b c d - a d^{2}\right )} {\left (b x + a\right )}\right )} \log \left (\cos \left (b x + a\right )^{2} + \sin \left (b x + a\right )^{2} - 2 \, \cos \left (b x + a\right ) + 1\right )}{b^{2}}}{2 \, b} \] Input:

integrate((d*x+c)^2*csc(b*x+a),x, algorithm="maxima")
 

Output:

-1/2*(2*c^2*log(cot(b*x + a) + csc(b*x + a)) - 4*a*c*d*log(cot(b*x + a) + 
csc(b*x + a))/b + 2*a^2*d^2*log(cot(b*x + a) + csc(b*x + a))/b^2 + (4*d^2* 
polylog(3, -e^(I*b*x + I*a)) - 4*d^2*polylog(3, e^(I*b*x + I*a)) - 2*(-I*( 
b*x + a)^2*d^2 + 2*(-I*b*c*d + I*a*d^2)*(b*x + a))*arctan2(sin(b*x + a), c 
os(b*x + a) + 1) - 2*(-I*(b*x + a)^2*d^2 + 2*(-I*b*c*d + I*a*d^2)*(b*x + a 
))*arctan2(sin(b*x + a), -cos(b*x + a) + 1) - 4*(I*b*c*d + I*(b*x + a)*d^2 
 - I*a*d^2)*dilog(-e^(I*b*x + I*a)) - 4*(-I*b*c*d - I*(b*x + a)*d^2 + I*a* 
d^2)*dilog(e^(I*b*x + I*a)) + ((b*x + a)^2*d^2 + 2*(b*c*d - a*d^2)*(b*x + 
a))*log(cos(b*x + a)^2 + sin(b*x + a)^2 + 2*cos(b*x + a) + 1) - ((b*x + a) 
^2*d^2 + 2*(b*c*d - a*d^2)*(b*x + a))*log(cos(b*x + a)^2 + sin(b*x + a)^2 
- 2*cos(b*x + a) + 1))/b^2)/b
 

Giac [F]

\[ \int (c+d x)^2 \csc (a+b x) \, dx=\int { {\left (d x + c\right )}^{2} \csc \left (b x + a\right ) \,d x } \] Input:

integrate((d*x+c)^2*csc(b*x+a),x, algorithm="giac")
 

Output:

integrate((d*x + c)^2*csc(b*x + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int (c+d x)^2 \csc (a+b x) \, dx=\int \frac {{\left (c+d\,x\right )}^2}{\sin \left (a+b\,x\right )} \,d x \] Input:

int((c + d*x)^2/sin(a + b*x),x)
 

Output:

int((c + d*x)^2/sin(a + b*x), x)
 

Reduce [F]

\[ \int (c+d x)^2 \csc (a+b x) \, dx=\frac {\left (\int \csc \left (b x +a \right ) x^{2}d x \right ) b \,d^{2}+2 \left (\int \csc \left (b x +a \right ) x d x \right ) b c d +\mathrm {log}\left (\tan \left (\frac {b x}{2}+\frac {a}{2}\right )\right ) c^{2}}{b} \] Input:

int((d*x+c)^2*csc(b*x+a),x)
 

Output:

(int(csc(a + b*x)*x**2,x)*b*d**2 + 2*int(csc(a + b*x)*x,x)*b*c*d + log(tan 
((a + b*x)/2))*c**2)/b