\(\int x^{-1-n} \sin ^3(a+b x^n) \, dx\) [149]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 18, antiderivative size = 114 \[ \int x^{-1-n} \sin ^3\left (a+b x^n\right ) \, dx=\frac {3 b \cos (a) \operatorname {CosIntegral}\left (b x^n\right )}{4 n}-\frac {3 b \cos (3 a) \operatorname {CosIntegral}\left (3 b x^n\right )}{4 n}-\frac {3 x^{-n} \sin \left (a+b x^n\right )}{4 n}+\frac {x^{-n} \sin \left (3 a+3 b x^n\right )}{4 n}-\frac {3 b \sin (a) \text {Si}\left (b x^n\right )}{4 n}+\frac {3 b \sin (3 a) \text {Si}\left (3 b x^n\right )}{4 n} \] Output:

3/4*b*cos(a)*Ci(b*x^n)/n-3/4*b*cos(3*a)*Ci(3*b*x^n)/n-3/4*sin(a+b*x^n)/n/( 
x^n)+1/4*sin(3*a+3*b*x^n)/n/(x^n)-3/4*b*sin(a)*Si(b*x^n)/n+3/4*b*sin(3*a)* 
Si(3*b*x^n)/n
 

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.83 \[ \int x^{-1-n} \sin ^3\left (a+b x^n\right ) \, dx=\frac {x^{-n} \left (3 b x^n \cos (a) \operatorname {CosIntegral}\left (b x^n\right )-3 b x^n \cos (3 a) \operatorname {CosIntegral}\left (3 b x^n\right )-3 \sin \left (a+b x^n\right )+\sin \left (3 \left (a+b x^n\right )\right )-3 b x^n \sin (a) \text {Si}\left (b x^n\right )+3 b x^n \sin (3 a) \text {Si}\left (3 b x^n\right )\right )}{4 n} \] Input:

Integrate[x^(-1 - n)*Sin[a + b*x^n]^3,x]
 

Output:

(3*b*x^n*Cos[a]*CosIntegral[b*x^n] - 3*b*x^n*Cos[3*a]*CosIntegral[3*b*x^n] 
 - 3*Sin[a + b*x^n] + Sin[3*(a + b*x^n)] - 3*b*x^n*Sin[a]*SinIntegral[b*x^ 
n] + 3*b*x^n*Sin[3*a]*SinIntegral[3*b*x^n])/(4*n*x^n)
 

Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.99, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {3906, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^{-n-1} \sin ^3\left (a+b x^n\right ) \, dx\)

\(\Big \downarrow \) 3906

\(\displaystyle \int \left (\frac {3}{4} x^{-n-1} \sin \left (a+b x^n\right )-\frac {1}{4} x^{-n-1} \sin \left (3 a+3 b x^n\right )\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {3 b \cos (a) \operatorname {CosIntegral}\left (b x^n\right )}{4 n}-\frac {3 b \cos (3 a) \operatorname {CosIntegral}\left (3 b x^n\right )}{4 n}-\frac {3 b \sin (a) \text {Si}\left (b x^n\right )}{4 n}+\frac {3 b \sin (3 a) \text {Si}\left (3 b x^n\right )}{4 n}-\frac {3 x^{-n} \sin \left (a+b x^n\right )}{4 n}+\frac {x^{-n} \sin \left (3 \left (a+b x^n\right )\right )}{4 n}\)

Input:

Int[x^(-1 - n)*Sin[a + b*x^n]^3,x]
 

Output:

(3*b*Cos[a]*CosIntegral[b*x^n])/(4*n) - (3*b*Cos[3*a]*CosIntegral[3*b*x^n] 
)/(4*n) - (3*Sin[a + b*x^n])/(4*n*x^n) + Sin[3*(a + b*x^n)]/(4*n*x^n) - (3 
*b*Sin[a]*SinIntegral[b*x^n])/(4*n) + (3*b*Sin[3*a]*SinIntegral[3*b*x^n])/ 
(4*n)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3906
Int[((e_.)*(x_))^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_), x 
_Symbol] :> Int[ExpandTrigReduce[(e*x)^m, (a + b*Sin[c + d*x^n])^p, x], x] 
/; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0]
 
Maple [A] (verified)

Time = 5.13 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.87

method result size
default \(\frac {3 b \left (-\frac {\sin \left (a +b \,x^{n}\right ) x^{-n}}{b}-\operatorname {Si}\left (b \,x^{n}\right ) \sin \left (a \right )+\operatorname {Ci}\left (b \,x^{n}\right ) \cos \left (a \right )\right )}{4 n}-\frac {3 b \left (-\frac {\sin \left (3 a +3 b \,x^{n}\right ) x^{-n}}{3 b}-\operatorname {Si}\left (3 b \,x^{n}\right ) \sin \left (3 a \right )+\operatorname {Ci}\left (3 b \,x^{n}\right ) \cos \left (3 a \right )\right )}{4 n}\) \(99\)
risch \(-\frac {\left (3 i b \,{\mathrm e}^{-3 i a} \pi \,\operatorname {csgn}\left (b \,x^{n}\right ) x^{n}-3 i b \,{\mathrm e}^{-i a} \pi \,\operatorname {csgn}\left (b \,x^{n}\right ) x^{n}-6 i b \,{\mathrm e}^{-3 i a} \operatorname {Si}\left (3 b \,x^{n}\right ) x^{n}+6 i b \,{\mathrm e}^{-i a} \operatorname {Si}\left (b \,x^{n}\right ) x^{n}-3 b \,{\mathrm e}^{3 i a} \operatorname {expIntegral}_{1}\left (-3 i b \,x^{n}\right ) x^{n}-3 b \,{\mathrm e}^{-3 i a} \operatorname {expIntegral}_{1}\left (-3 i b \,x^{n}\right ) x^{n}+3 b \,{\mathrm e}^{-i a} \operatorname {expIntegral}_{1}\left (-i b \,x^{n}\right ) x^{n}+3 b \,{\mathrm e}^{i a} \operatorname {expIntegral}_{1}\left (-i b \,x^{n}\right ) x^{n}+6 \sin \left (a +b \,x^{n}\right )-2 \sin \left (3 a +3 b \,x^{n}\right )\right ) x^{-n}}{8 n}\) \(190\)

Input:

int(x^(-1-n)*sin(a+b*x^n)^3,x,method=_RETURNVERBOSE)
 

Output:

3/4/n*b*(-sin(a+b*x^n)/b/(x^n)-Si(b*x^n)*sin(a)+Ci(b*x^n)*cos(a))-3/4/n*b* 
(-1/3*sin(3*a+3*b*x^n)/b/(x^n)-Si(3*b*x^n)*sin(3*a)+Ci(3*b*x^n)*cos(3*a))
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.83 \[ \int x^{-1-n} \sin ^3\left (a+b x^n\right ) \, dx=-\frac {3 \, b x^{n} \cos \left (3 \, a\right ) \operatorname {Ci}\left (3 \, b x^{n}\right ) - 3 \, b x^{n} \cos \left (a\right ) \operatorname {Ci}\left (b x^{n}\right ) - 3 \, b x^{n} \sin \left (3 \, a\right ) \operatorname {Si}\left (3 \, b x^{n}\right ) + 3 \, b x^{n} \sin \left (a\right ) \operatorname {Si}\left (b x^{n}\right ) - 4 \, {\left (\cos \left (b x^{n} + a\right )^{2} - 1\right )} \sin \left (b x^{n} + a\right )}{4 \, n x^{n}} \] Input:

integrate(x^(-1-n)*sin(a+b*x^n)^3,x, algorithm="fricas")
 

Output:

-1/4*(3*b*x^n*cos(3*a)*cos_integral(3*b*x^n) - 3*b*x^n*cos(a)*cos_integral 
(b*x^n) - 3*b*x^n*sin(3*a)*sin_integral(3*b*x^n) + 3*b*x^n*sin(a)*sin_inte 
gral(b*x^n) - 4*(cos(b*x^n + a)^2 - 1)*sin(b*x^n + a))/(n*x^n)
 

Sympy [F]

\[ \int x^{-1-n} \sin ^3\left (a+b x^n\right ) \, dx=\int x^{- n - 1} \sin ^{3}{\left (a + b x^{n} \right )}\, dx \] Input:

integrate(x**(-1-n)*sin(a+b*x**n)**3,x)
 

Output:

Integral(x**(-n - 1)*sin(a + b*x**n)**3, x)
 

Maxima [F]

\[ \int x^{-1-n} \sin ^3\left (a+b x^n\right ) \, dx=\int { x^{-n - 1} \sin \left (b x^{n} + a\right )^{3} \,d x } \] Input:

integrate(x^(-1-n)*sin(a+b*x^n)^3,x, algorithm="maxima")
 

Output:

integrate(x^(-n - 1)*sin(b*x^n + a)^3, x)
 

Giac [F]

\[ \int x^{-1-n} \sin ^3\left (a+b x^n\right ) \, dx=\int { x^{-n - 1} \sin \left (b x^{n} + a\right )^{3} \,d x } \] Input:

integrate(x^(-1-n)*sin(a+b*x^n)^3,x, algorithm="giac")
 

Output:

integrate(x^(-n - 1)*sin(b*x^n + a)^3, x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int x^{-1-n} \sin ^3\left (a+b x^n\right ) \, dx=\int \frac {{\sin \left (a+b\,x^n\right )}^3}{x^{n+1}} \,d x \] Input:

int(sin(a + b*x^n)^3/x^(n + 1),x)
 

Output:

int(sin(a + b*x^n)^3/x^(n + 1), x)
 

Reduce [F]

\[ \int x^{-1-n} \sin ^3\left (a+b x^n\right ) \, dx =\text {Too large to display} \] Input:

int(x^(-1-n)*sin(a+b*x^n)^3,x)
 

Output:

(2*( - 3*cos(x**n*b + a)*sin(x**n*b + a)*tan((x**n*b + a)/2)**6 - 9*cos(x* 
*n*b + a)*sin(x**n*b + a)*tan((x**n*b + a)/2)**4 - 9*cos(x**n*b + a)*sin(x 
**n*b + a)*tan((x**n*b + a)/2)**2 - 3*cos(x**n*b + a)*sin(x**n*b + a) + 20 
*x**n*int(tan((x**n*b + a)/2)**3/(x**n*tan((x**n*b + a)/2)**6*x + 3*x**n*t 
an((x**n*b + a)/2)**4*x + 3*x**n*tan((x**n*b + a)/2)**2*x + x**n*x),x)*tan 
((x**n*b + a)/2)**6*n + 60*x**n*int(tan((x**n*b + a)/2)**3/(x**n*tan((x**n 
*b + a)/2)**6*x + 3*x**n*tan((x**n*b + a)/2)**4*x + 3*x**n*tan((x**n*b + a 
)/2)**2*x + x**n*x),x)*tan((x**n*b + a)/2)**4*n + 60*x**n*int(tan((x**n*b 
+ a)/2)**3/(x**n*tan((x**n*b + a)/2)**6*x + 3*x**n*tan((x**n*b + a)/2)**4* 
x + 3*x**n*tan((x**n*b + a)/2)**2*x + x**n*x),x)*tan((x**n*b + a)/2)**2*n 
+ 20*x**n*int(tan((x**n*b + a)/2)**3/(x**n*tan((x**n*b + a)/2)**6*x + 3*x* 
*n*tan((x**n*b + a)/2)**4*x + 3*x**n*tan((x**n*b + a)/2)**2*x + x**n*x),x) 
*n - sin(x**n*b + a)**3*tan((x**n*b + a)/2)**6 - 3*sin(x**n*b + a)**3*tan( 
(x**n*b + a)/2)**4 - 3*sin(x**n*b + a)**3*tan((x**n*b + a)/2)**2 - sin(x** 
n*b + a)**3 - 3*sin(x**n*b + a)*tan((x**n*b + a)/2)**6 - 9*sin(x**n*b + a) 
*tan((x**n*b + a)/2)**4 - 9*sin(x**n*b + a)*tan((x**n*b + a)/2)**2 - 3*sin 
(x**n*b + a) + 20*tan((x**n*b + a)/2)**3 + 12*tan((x**n*b + a)/2)))/(5*x** 
n*n*(tan((x**n*b + a)/2)**6 + 3*tan((x**n*b + a)/2)**4 + 3*tan((x**n*b + a 
)/2)**2 + 1))